
FORMAL OBJECT STATE MODEL TRANSFORMATIONS FOR

AUTOMATED AGENT SYSTEM SYNTHESIS

THESIS

David Wesley Marsh, Captain, USAF

AFIT/GCE/ENG/OOM-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

^Miüy memOMD 4 20000815 187

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the

U. S. Government.

AFIT/GCE/ENG/OOM-03

Formal Object State Model Transformations for

Automated Agent System Synthesis

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

David Wesley Marsh, B.S.

Captain, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/OOM-03

Approved:

Formal Object State Model Transformations for

Automated Agent System Synthesis

David Wesley Marsh, B.S.

Captain, USAF

Dr. Thomas C. Hartrum Date
Committee Chair

^^7Gh&L ?M^p
Maj. Scott A. DeLoach Date
Committee Member

Maj. Robert P. Graham, #. Date
Committee Member

Acknowledgements

I would first like to acknowledge God as the provider of life and intellect and thank Him

for giving me the ability to rise to AFIT's challenges. Next I must express my deepest

gratitude to Kristina for hanging in there and taking care of our home so that I could

dedicate more of my time to school work; without her help both as proof-reader and as

home-maker I could not have accomplished nearly as much. To Dr. Hartrum I extend

special thanks for giving me the freedom to pursue my thesis in my own way and for

providing insightful and challenging feedback along the way. I am also indebted to Maj

DeLoach and Maj Graham for their assistance with the thesis development; their feedback

was vital to a successful end product. Finally I thank my classmates for making the long

days (and nights!) at school profitable and, dare I say, enjoyable.

David Wesley Marsh

m

Table of Contents

Page

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Abbreviations x

Abstract xi

I. Introduction 1

1.1 Problem 2

1.2 Initial Assessment of Past Effort 3

1.3 Scope 4

1.4 Research Approach 5

1.5 Document Layout 6

II. Background 7

2.1 Formal Methods and the Dynamic Model 7

2.2 Agent Specification 8

2.2.1 Agent Characteristics 9

2.2.2 Agent Models and Specifications 11

2.2.3 Agent Representation Summary 14

2.3 Agent System Specification 15

2.3.1 Agent Systems Characteristics 15

2.3.2 Agent System Models and Specifications 17

2.3.3 Agent System Representation Summary 24

IV

Page

III. System Models 25

3.1 Analysis Specification 25

3.1.1 00 Structural Model in AWSOME 28

3.1.2 00 Functional Model in AWSOME 28

3.1.3 00 Dynamic Model in AWSOME 30

3.2 Design Specification 35

3.2.1 Additions to Class Attributes 36

3.2.2 Additions to Class Operations 36

3.3 Handling Agency 40

3.3.1 Inter-Agent Communications 41

3.3.2 Proactive Behavior 43

3.4 Model Summary 44

IV. Transformations 45

4.1 Incorporating Additional Domains 45

4.2 Dynamic Model Transformations 47

4.2.1 Formal Notations 47

4.2.2 Adding Class Attributes 50

4.2.3 Adding Operations for Received Events 51

4.2.4 Adding Operations for Send Events 52

4.2.5 Adding the "transitions" Operation 54

4.3 Transformation Summary 57

V. Demonstration 58

5.1 Agent Communication Protocols 58

5.2 Analysis Model 58

5.3 Transformation Process 62

5.3.1 Creating Necessary Attributes 62

Page

5.3.2 Creating Received Event Operations 63

5.3.3 Creating Send Event Operations 63

5.3.4 Creating "transitions" Operation 64

5.4 Resultant Design Model 65

5.5 System Implementation 68

5.6 Summary 69

VI. Conclusion, Contributions, and Recommendations 70

6.1 Contributions 70

6.2 Recommendations for Further Research 71

6.3 Conclusions 72

Appendix A. Generic Room System Specification in Z 73

A.l Room 74

A.2 RoomWithCapy 74

A.3 RoomKeeper 75

A.4 RoomUser 78

Appendix B. Template for Creating Java Representations of AWSOME Types 84

Appendix C. Room System Implementation with MARSH System Commu-

nications 86

Appendix D. MARSH System Protocol Objects 97

Appendix E. Java Code for Room System Standard Input and Output . . 106

Appendix F. Room System Implementation with agentMom Communications 112

Bibliography 121

Vita 124

VI

List of Figures

Figure Page

1. AWSOME and AFITtool Process Model 3

2. Sample OMT State Diagram 7

3. Z Representation of Objects and Agents 13

4. AgML Agent Class Model 17

5. Conversations in AgML 18

6. AgML Communication Hierarchy 18

7. Communication Class in AgML 18

8. Deployment Diagram in AgML 19

9. Z Representation of an Agent System 21

10. Z Representation of Cooperation 22

11. Z Representation of a Multiagent System 22

12. Example Graphical Representation of a Type 25

13. AWSOME Package 26

14. AWSOME Identifier 26

15. AWSOME Class 26

16. AWSOME Data Type and Its Inheritance 27

17. AWSOME Name Type and Its Inheritance 29

18. AWSOME Attribute 29

19. AWSOME Variable and Constant 29

20. AWSOME IdentifierRef 30

21. AWSOME Method 30

22. AWSOME Subprogram in Analysis 30

23. AWSOME Parameter 31

24. AWSOME State 31

25. AWSOME Event 31

vn

Figure Page

26. AWSOME Transition 32

27. AWSOME Subprogram in Design 36

28. AWSOME Statement inheritance Hierarchy 37

29. Example Attribute Instance Created from an Event Parameter ... 37

30. Example Attribute Instance for Storing an Event Name 37

31. Example Selection Statement Instance Based on a Transition 38

32. Example Iteration Statement Instance for "transitionlteration" ... 38

33. "transitions" Subprogram Instance Structure 39

34. Example "receiveEvent< X >" Subprogram Instance 39

35. AWSOME SubprogramCall 40

36. Example "sendEvent< X >" Subprogram Instance 40

37. Z Representation of the Message and Agent Classes 43

38. Creating Attributes from Events 51

39. Creating Operations for Received Event Handling 53

40. Creating Operations for Send Event Handling 55

41. Creating "transitions" 56

vm

List of Tables

Table Page

1. Foner's Crucial Notions of Agency 9

2. DeLoach's Traits of Agency 10

3. Kendall's Agent Characteristics 11

4. Types for Use in Z Agent Specifications 12

5. Template for Role Schema 14

IX

List of Abbreviations

Abbreviation Meaning

AFIT Air Force Institute of Technology

AgDL Agent Design Language

AgML Agent Modeling Technique

AI Artificial Intelligence

AO Agent Oriented

AST Abstract Syntax Tree

AWSOME AFIT Wide Spectrum Object Modeling Environment

COIL Common Object-Oriented Imperative Language

DOM Domain Specification Abstract Syntax Tree

GOM Generic Object Model Abstract Syntax Tree

MARSH Multi-Agent Relationships via Socket cHannels

MaSE Multiagent System Engineering

OMT Object Modeling Technique

00 Object Oriented

UML Unified Modeling Language

AFIT/GCE/ENG/OOM-03

Abstract

Automated agent system synthesis is the process of generating code from a require-

ments specification with appropriate inputs from the software engineer. Object-oriented

(00) specifications are frequently used to model intelligent software agent systems and

software requirements in general; formal representations capture precisely the intentions of

the specifier. Portions of 00 specifications can be classified as the structural, functional,

and state (or dynamic) models; major strides have been taken in the development of trans-

formations for creating code from formal 00 specifications, specifically the structural and

functional aspects, and are captured within the AFIT Wide-Spectrum Object Modeling

Environment (AWSOME). This research creates a methodology for the automatic trans-

formation of the dynamic model into structural and functional components which can then

be exploited for the generation of executable code exactly reflecting the original intent of

the requirements specification. The integration of agent communication protocols within

this context is addressed, providing a methodology for the incorporation of various agent-

to-agent and agent-to-human interaction schemes. Feasibility is demonstrated through the

application of transformations to a formal requirements model within AWSOME resulting

in executable code.

XI

Formal Object State Model Transformations for

Automated Agent System Synthesis

/. Introduction

A client from the maintenance analysis section walks in the door of the Base Com-

puter Programs Support Branch and asks for a computer program that will use information

in existing databases to identify all abnormally high break rates for the F-15s both on base

and around the world. The program needs to forward those items to the appropriate on-

base maintenance shop supervisors by e-mail and print "personalized" letters highlighting

safety-critical items that appear on the list to the squadron commanders and appropriate

staff members. The software engineer turns to the computer and types in a few lines of

specification after clarifying a few more details with the client. A few minutes later the

software is ready and the maintainers and their supervisors will soon have a "heads-up"

for potential problem components or systems in the aircraft.

This is a simplistic example of what could become commonplace in the future: making

use of software tools that generate executable code automatically from high-level specifi-

cations, statements of requirements, or graphical models. While much progress has been

made in this area, the field is still quite young and additional work to realize the ultimate

goal is necessary.

The past five years of research and development at the Air Force Institute of Technol-

ogy (AFIT) have yielded a software implement referred to as the AFIT Wide-Spectrum Ob-

ject Modeling Environment (AWSOME). Ultimately AWSOME will automatically trans-

form entire program specifications into executable code. Z representation of the object

oriented (00) paradigm has shaped AWSOME's structure but this is of little import to

the broader scope of what it encapsulates. AWSOME's basic function is to transform a for-

mally correct representation of an object model into a domain abstract syntax tree (DOM)

and then to transform the DOM into another abstract syntax tree (AST), the generic ob-

ject model (GOM), through the use of formal rules. Finally, AWSOME generates code for

any programming language whose grammar is defined in the system. The outlook is quite

good for AWSOME to generate useful executable code from complete formal specifications

of 00 models in the near future.

The example that began this thesis will likely make use of an automated transfor-

mation system such as AWSOME as well as an area of research that is still in its infancy:

artificial intelligence (AI) agents1. Exactly what a software agent is and how it interacts

with its world is not much beyond purely conceptual representation. Models for repre-

senting and implementing agents are still immature, though recent AI research has begun

to formalize an approach to agent creation. Developing the principles of automated agent

system software generation from a formal system specification is one more step toward the

goal of designing programs and not having to code them manually.

1.1 Problem

The problem currently being addressed is the development of a methodology for the

automatic conversion of an agent system from specification to executable code. Feasibility

is demonstrated through an implementation using AWSOME.

When specifying agent systems the first questions to ask are 1) what characteristics

are common to the agent domain and 2) what model best represents those characteristics.

Some qualities are undisputed, such as the ability to "remember" information and the

capacity to perform actions. Other areas such as autonomicity are much more subjective,

both in definition and in pertinence. Because AWSOME can represent Z specifications

well and previous research shows that conversion from any 00 design model into Z is

straightforward [30], a likely continuing requirement is to capture necessary characteristics

in an OO-type model.

Developing transformations that must take place between the DOM representation of

software system analysis and the GOM specification of software design is the most daunting

task in this research effort. Research and implementation are focused on the dynamic

object model, but requires an evaluation of the existing transformations in AWSOME and

1also referred to in this document by variants such as "intelligent agents," "software agents," or simply
"agents"

its predecessor, AFITtool. AFITtool has many portions of this transformation in place,

with the overall approach shown in Figure 1. While much of the system has been addressed

by others as identified in Section 1.2, the dynamic model is more thoroughly addressed in

this research.

Domain
Modeling

Agent Domain Expert
and

Domain Engineer

DOM

Formal
Design
Histories

Design
Transform

Software
Engineer

COM

Figure 1. AWSOME and AFITtool Process Model

1.2 Initial Assessment of Past Effort

AFITtool can currently parse an 00 specification into the DOM from a representa-

tion in I^IpjX Z. It can then translate the structural and functional model representations

into a GOM abstract syntax tree. While the concept has been proven for both primitive

and aggregate 00 classes, only the structural and functional 00 models have been ad-

dressed to a detailed level [25,39]; translation of the dynamic model remains. A system

also exists for translating 00 models from a Rational Rose representation into Z, which

can then be parsed into AFITtool [30]. The ease with which Z and the 00 approach work

together is a key reason these two have been implemented in AFITtool.

Methodologies for describing agent systems exist with a varying degree of thorough-

ness as detailed in Chapter II. One such 00 representation that provides a high-level

approach to agent system design appears in Kendall's work [23]. A more formal approach

dedicated to Z representations of agent specifications is presented by Luck and d'Inverno [9].

Other works also provide methods for agent system analysis and design that could conform

nicely to 00 and Z models [6,17,22,23,38].

The output from AFITtool is currently Ada code, which has been shown to be an

accurate implementation of the initial specification [25,39]. Again, this cannot currently

be accomplished with the entire 00 model but the concept has been proven and can be

expanded by future research.

Because Refine [33] handles information transformations easily and has powerful

operations for working with ASTs, this environment was chosen for AFITtool implemen-

tation. Further modifications or additions to AFITtool need not be in Refine and, in fact,

may be more desirable in a more common language environment. Using the same concepts

that are provided by the Refine implementation can lead to the development of a similar

tool's instantiation in many other languages as well; AWSOME is a tool designed to do

exactly that in the Java language.

Many different sources contributed to the DOM and GOM structures used in AW-

SOME. Rumbaugh's Object Modeling Technique (OMT) provides a general object-oriented

domain model [35]. Sward developed the Generic Object Model (GOM), a general 00

programming model [37]. The Common Object-Oriented Imperative Language (COIL),

developed by Graham [14], provides a language-independent representation of program

designs. Finally, the Unified Modeling Language (UML) has also influenced the AW-

SOME model [31]. All of these have had significant impact on the analysis and design

representations now used in AWSOME.

1.3 Scope

As previously stated, the goal of this research is to produce a methodology for auto-

matically converting an agent system from specification to executable code and to demon-

strate its feasibility through AWSOME. This researcher develops a system for transforming

generic specifications into various agent or non-agent implementations for many different

applications. Because the diversity of approaches for defining and implementing agency is

extremely broad, it is necessary to focus on a subset rather than the universe of intelligent

software agents.

The AWSOME system has been altered through many different research efforts.

Therefore some inconsistencies exist among semantics, methodologies, and implementation

decisions. Further design and development of AWSOME within this research is focused

only on those aspects relating directly to dynamic model manipulations in the context of

agent system development.

1-4 Research Approach

This research creates a specification of a basic agent system and extends AWSOME

to support the automatic generation of executable code for this agent system. The steps

are: 1) develop or refine a model for capturing agent systems, 2) formally specify the model

with a focus on the dynamic characteristics (previous research has focused on the structural

and functional aspects [25,39]), 3) represent the specification in the AWSOME analysis

model, 4) transform the model from the analysis specification into a design representation,

and 5) generate executable code. The analysis specification model is also referred to as the

"DOM" and the design specification model as the "GOM" throughout this thesis.

The first step is to develop a model and specification for the agent system. An ex-

amination of existing methodologies for specifying agents and agent systems provides the

basis for determining relative values of existing representations for this research. Once a

methodology has been selected, an approach to agent system representation is developed

and specified. Without a formal model, the demonstration of the results of this research

would be impossible; therefore formal specifications are required. Since AWSOME handles

00 representations well and previous research has developed the formal syntax (using

Z specifications) and semantics for structural and functional 00 components, specifica-

tions mirror the 00 paradigm; syntax and semantics for the dynamic model, including

states, events, and transitions is thoroughly developed in this thesis and representations

are developed for the AWSOME DOM.

Transformation of the DOM into the GOM constitutes a significant portion of the

work handled here. A set of rules and functions must maintain proper definitions of the

interactions between classes/agents and their external connections. The final step requires

the extension of the existing AWSOME system to generate executable code from the GOM.

The last phase, code generation, is not the focus of this research and, while addressed, is

not fully explored. After transformations are developed the theory is applied to an example

system. Three communication protocols are used to demonstrate the adaptability of the

automatically generated code to various inputs and outputs to the system.

1.5 Document Layout

This thesis is presented with an overview of the application of formal methods to dy-

namic model manipulations and various approaches to agent description and specification

used for the creation of agent and agent system specifications Chapter II. Chapters III

through V present the three key contributions of this research:

1. The formal specification of the syntax and semantics for the dynamic model within

AWSOME provides for an unambiguous input model in Chapter III.

2. Chapter IV provides the definition of five dynamic model transformations to rep-

resent a model of states, events, and transitions within structural and functional

components which can be harnessed directly for code generation. Mathematical ex-

pressions capturing the effects of the transformations provide the formality required

for future proofs of correctness preservation within the transformation system.

3. The above two contributions are implemented within AWSOME and demonstrated

in a simple system using three separate communication protocols in Chapter V.

Chapter VI completes this thesis by providing a summary of these contributions, recom-

mendations for further research, and other concluding comments.

II. Background

This chapter provides background information to assist the reader in understanding the

concepts discussed in this thesis. Topics included are the application of formal methods

to dynamic model manipulations within the object oriented paradigm (Section 2.1) and

various approaches to agent description and specification used for the creation of agent

and agent system specifications (Sections 2.2 and 2.3).

2.1 Formal Methods and the Dynamic Model

The dynamic model as used in the OMT [35] graphically depicts the behavior of a

system by using a state diagram, demonstrated in Figure 2. The rounded boxes represent

states an object may visit, while the text associated with each arrow provides information

about the causal event ("ex"), data items associated with the event ("(dra)")i guarding

conditions ("[fix]")) and actions resulting from the event ("/ax").

e,(d11,d12,...,dlm)[g1]/a1

e3(d31,d3,d.Jfe]^

Figure 2. Sample OMT State Diagram

Wang, et al., have developed a formalized syntax and semantics that, when applied to

the state diagram, merge the formalisms required for application to automated processing

and transformations with the simplicity of graphically-based design [40]. Their ongoing

work is aimed at formulating methods for transforming an analysis specification into a

design specification. The first step toward dynamic model formalization is the description

of the semantics to be used. The behavior of an object, defined as the communications and

operations that occur between the object and the environment, is fully specified within the

dynamic model. Modeling of the environment is limited to the various objects; therefore,

modeling of communications is limited to inter-object communications.

States are used when defining the various interaction sequences that are allowed

within the system. Events represent inter-process communication. A guard condition

describes the circumstances required for a state transition to occur and is represented by

a set of predicates. Transitions are simply the state changes caused by some event. Each

transition whose starting state differs from its ending state causes state changes. Actions

and activities describe the operations performed by the object during a transition and

upon entry into a state, respectively. The distinction between the two is somewhat fuzzy,

separating "instantaneous" operations from those performed over a period of time. The

designer must select which model best applies to the operation in question.

Bolognesi and Brinksma also use a formal specification language for formalizing state

diagrams to capture the behavior of individual objects [2]. Their model is extended to ac-

commodate aggregate objects through a parallel composition of individual state diagrams.

2.2 Agent Specification

Defining agency and agent systems is a daunting proposition at this time. Researchers

use many different characteristics to define agency, some of these are presented in Sec-

tion 2.2.1. While many alternative views have been asserted [4-6,10,13,18,19,22,23,26-

29,32,36] only a representative sample of this diversity is discussed below. Agent mod-

eling is approached from equally diverse positions [6,10,19,24,26,29,32,36,41]. Several

of these models are selected for their applicability or ease of adaptation to this research

and are reviewed in Section 2.2.2. Other models have been proposed but are not reviewed

here because either they are similar to those presented or they do not provide views easily

applied to automated synthesis activities.

2.2.1 Agent Characteristics. While the use of the term agent is overloaded,

ambiguous, and widely misunderstood1, agent architectures abound and many seemingly

ad hoc agent systems are appearing in all corners of the computer software world as

practitioners create software programs with some level of intelligence or utility and call

them agents. Some articles describe agency in the broadest of terms. Lander, for example,

takes the view that an agent is "any relatively autonomous software component" that adds

expertise to a design and can include communications [27:19].

On the other hand, Foner includes detail in his description of exactly what an agent

is. Table 1 lists his "crucial notions" and what they mean in relation to the definition of

an agent. Foner states that while each of these characteristics may be present to greater

or lesser degrees, they describe aspects that may be useful in designing agents.

Table 1. Foner's Crucial Notions of Agency [13:35-37]
Autonomy the agent's ability to initiate on its own those actions that

will benefit the user
Personalizability the quality that enables an agent not only to learn what the

user's agenda is, but also to remember the available infor-
mation for use in later settings. The user does not have to
program every element of the agent because the agent learns
by observing actions and remembering

Discourse two-way communication takes place in which the agent and
user interact; the agent and the user work out a "contract"
that determines who will do which part of the task

Graceful Degradation the agent's ability to complete portions of the task even when
some steps cannot be accomplished; if communications be-
tween the agent and user are not completely clear (or are
disrupted) or if the agent is incapable of accomplishing the
entire portion of a task delegated to it, the agent must pro-
vide as much of the desired result as possible

Cooperation required two-way communication in which the user and agent
decide together how a goal will be accomplished; another
approach to Discourse

DeLoach contends in his multiagent systems engineering (MaSE) approach that

agents can be modeled as active objects [6]. Agents possess the four primary traits iden-

1 Misunderstanding the definition of agent may not be possible given the diversity of opinions on the
subject!

tified in Table 2. This list demonstrates that agents differ from objects in several ways.

Agents are active, exhibit goal-directed behavior, and share a common messaging language

with other agents whereas objects are passive reactors to the environment and handle mes-

sage passing differently depending on the given class. Therefore, the basic picture of an

agent is that of an object with the added attributes of goals and standardized communi-

cations. His approach presents the characteristics of agency as an abstraction of the 00

paradigm. Because the designer may model both traditional objects and agents there is

no need to define exactly what constitutes an agent.

Table 2. DeLoach's Traits of Agency [6]
Autonomicity the ability to act without being controlled by an external entity
Cooperativeness the ability to communicate and act in coordination with other

entities
Perceptiveness the ability to sense the environment and respond to it
Pro-activeness the ability to act decisively to accomplish goals

Kendall, et al. develop a fairly broad picture of an agent [23]. Their definition of an

agent includes up to the eight distinct characteristics in Table 3; the first four describe

"weak" agency while the last four add "stronger" qualities. The model further describes

agents as specialized objects, adding the traits of "reasoning, pro-activity, migration, con-

currency, and collaboration" [23:3] to the 00 paradigm. Implicit in another of Kendall's

approaches to agents are the characteristics of carrying out actions, maintaining goals,

possessing responsibilities, performing tasks, developing (or retaining) expertise, and com-

municating in some form with other entities [22].

In their work with specifications of agents and agent systems, Luck and d'Inverno [29]

describe agents as specializations of objects much like DeLoach [6]. The Z specification,

however, identifies a formal framework for two levels of agency: the generic agent and

the autonomous agent. An object possesses attributes, actions it can perform, states it

can traverse, and interactions with its environment while an agent maintains goals and a

perception of both the environment and how its actions affect its goals and the environ-

ment. An autonomous agent is further specialized to include motivations which affect the

perceptions received and the actions performed.

10

Table 3. Kendall's Agent Characteristics [23:1-2]

Autonomous operate without constant directions from external sources, able
to move from one (electronic) location to another

Social "interact with other agents"
Reactive perceive the environment and act in response to changing per-

ceptions
Pro-active operate on the environment to affect changes and not just wait

for the environment to change them
Mentalistic notions possess and utilize beliefs, desires, and intentions
Rational perform those "actions which further its goals"
Veracity (self-explanatory)

Adaptable learning ability

2.2.2 Agent Models and Specifications. The variety of descriptions of the agent

characteristics above are helpful for understanding what is to be modeled. Two approaches

are presented below (with another following in Section 2.3.2.1) providing for both a variety

of representation styles and the key background helpful in later chapters.

2.2.2.1 A Z Approach. Luck and d'Inverno [29] present two key reasons for

using a Z representation:

1. The modularity and abstraction levels Z provides communicate the structured nature

of agents including the properties of inheritance and specialization.

2. Z is useful for bridging the gap between formal specifications and implementation.

The fact that Z is widely accessible within the artificial intelligence community is noted as

an additional advantage to this model.

Several requirements are presented as prerequisites for a formally specified model to

be considered useful:

1. The specification must be clear and readable.

2. Models must provide complete definitions of concepts and terms and allow for alter-

native design approaches during development.

3. A good formal specification methodology must provide a way to create generic spec-

ifications as well as specializations as appropriate or desired.

11

4. The designer must be allowed to choose the level of abstraction of the specification.

Luck and d'Inverno assert that Z fulfills these requirements.

This formal specification represents objects, agents, and autonomous agents, identi-

fying certain characteristics required for agency. The Z language is not tied to a particular

architecture, providing the designer flexibility in the level of detail and general approach

when creating a model. Table 4 presents Luck and d'Inverno's definitions of the "types"

used in this specification scheme and Figure 3 shows the Z structure of the environment,

objects, agents, and autonomous agents.

 Table 4. Types for Use in Z Agent Specifications
Attributes perceivable features in the environment
Actions discrete events that can alter the environment
Goals something to be achieved in the environment
Motivations preferences that lead to goals

The entity hierarchy begins with the environment, which is simply a collection of

attributes. An object contains a subset of environmental attributes with the addition

of actions. Agents incorporate goals into objects while autonomous agents extend even

further to include motivations. Also discussed are Z representations of the perceptions,

actions, and states objects and object specializations may possess. Because it deals more

with agent systems, this approach is addressed more thoroughly in Section 2.3.2.1.

2.2.2.2 Agent Oriented Modeling Technique. This section presents two

Agent Oriented (AO) techniques for developing intelligent agents. The first presents a

high level view while the second model delves deeper into exactly what an agent is and

how it acts.

According to Wooldridge, et al. [41] agent descriptions can be derived from the roles

the agents play in a system. Assuming a closed system in which all components work

together to accomplish common goals, the software engineer develops the role schema

depicted in Table 5; each role schema draws together all information pertinent to the

role that is needed during agent design. Once this representation is complete, design

is continued by transforming the analysis model into a lower level of abstraction that

12

[ATTRIBUTE, ACTION, GOAL, MOTIVATION]

^Env.
Environment: PATTRIBUTE

. Object
Env

capableOf-.P ACTION
Attributes : P ATTRIBUTE

Attributes C Environment

. Agent
Object

Goals: P GOAL

Goals + {}

. Autonomous Agent
Agent

Motivations : P MOTIVATION

Motivations ^ {}

Figure 3. Z Representation of Objects and Agents

traditional design techniques can handle. To reach this level the identified roles are mapped

nearly one-to-one onto types of agents that handle a particular role. The agents are

designed to provide the specific services identified with their roles and to communicate via

unspecified communication links to external resources or other agents. Details in all areas

are left for the engineer to develop using the environment of choice.

The next model, developed by Kinney and Georgeff, begins with a look at the roles

agents play in a system. They develop an agent using three sub-models: the belief, goal,

and plan models [24]. These models describe the agent's "informational and motivational

state and its potential behavior." Each of these models can be represented formally using

13

Table 5. Template for Role Schema [41]
Description short English description of the role
Protocols protocols in which the role plays a part
Permissions "rights" associated with the role
Responsibilities

Liveness
Safety

self explanatory
self explanatory

predefined sets and types. The belief model describes the knowledge base of the agent,

including its knowledge about both its internal state and its beliefs about its environment.

The state of the agent is determined in part by its belief state. Potential goals of the agent

are represented in the goal model. A goal set specifies the domain of the agent's goals and

any events to which the agent may respond. Goal states are simply the goals that may

help specify the initial state of the agent.

Plans that may be used by the agent in achieving its goals are contained in the plan

set, a part of the plan model. These plans are not like an 00 description of system behavior

but encompass the beginning, intermediate, and ending states to be passed through en

route to goal achievement. Each plan has three properties. 1) "Priority" determines the

ordering of plan execution in concurrent systems, 2) "Precedence" determines the ordering

of plan execution when a new goal is introduced, and 3) "No retry" identifies whether or

not the agent should attempt to execute a failed plan again.

An agent represented in this model would be described in detail: exactly what actions

it would take in any given situation, what pieces of knowledge the agent could possess,

and what the agent's plan would be for any given circumstance.

2.2.3 Agent Representation Summary. The AO model approaches the prob-

lem from the aspect of typical agent components and properties such as planning, goals,

communications, and beliefs (or perceptions). While this model captures agent proper-

ties differently than other languages, more familiar models facilitate representations of the

same properties with greater ease.

14

MaSE uses formal representations, both graphical and predicate logic-based, to de-

velop agents. The Z-based approach also presents a well-defined structure of agents, pro-

viding the formal language that is a prerequisite to automated synthesis.

2.3 Agent System Specification

Having considered what constitutes agency and how agents may be represented

during design, a closer look at the unique qualities of agent systems that may require

consideration during modeling is warranted. For a high-level overview of agent system

characteristics, Section 2.3.1 selects two approaches to the identification of agent system

characteristics [8,38]. One identifies the requirements for formal system representations,

while the other looks at the question from a more pragmatic standpoint. Other viewpoints

exist [4,5,12,18-20,28] but are not presented here because they either apply to specific

problem domains or simply do not add significantly to the two already reviewed.

Section 2.3.2 selects two agent system models for review, one for its ease of applica-

tion [6] and the other for its formal approach [9]. Many other agent system models have

been accomplished within specific domains and are not reviewed here [4,5,12,19-21,26,

28,34]. Because all agent systems must interact with humans to be useful, this particular

system challenge is addressed in Section 2.3.2.3. One approach is explored for its handling

of this interaction [17]. Another may provide additional background in this area but does

not lend itself as well to this research and is not reviewed here [34].

2.3.1 Agent Systems Characteristics. d'Inverno, et al. describe some of the qual-

ities a multiagent system should exhibit [8]. Among them are a sense of group knowledge

and intention—an indication that the system is working toward a goal or set of goals.

Interaction among agents involving both communication and cooperation toward the goals

should also be apparent.

Sycara provides an overview of what agent systems are and of considerations the

designer must make when developing them [38]. She mentions several reasons these systems

are useful:

15

1. They can solve more complex problems without the concern for resource limitations

inherent in a single-agent system.

2. A multiagent environment can avoid the potential risk of a single point of failure.

3. Interconnection of legacy systems is possible by using agents to interface between

themselves and the rest of the system. The ability to operate with distributed infor-

mation or expertise sources is provided.

4. A system can more easily solve problems that look like a "society" such as calendar

schedulers or automated news group management.

Some characteristics of multiagent systems include concurrency, reliability, graceful error

recovery, extensibility, robustness, uncertainty handling, and the simpler maintainability

that comes with modular and possibly duplicate components [38:80]. The system is also

more likely to be responsive and flexible within a changing environment.

Issues and challenges inherent to agent system design are similar to problems faced

in traditional parallel or distributed systems. These may include the following [38]:

1. What are the system characteristics? How will the system as a whole learn, reason,

plan, and move toward goals?

2. How will the agents be organized functionally? Where will the agents reside (e.g.

on a single computer or across a network)? What knowledge will an agent possess

about other agents or external resources?

3. What is the best way to distribute the work load among agents? Which tasks should

be allocated to each agent?

4. How should communication to and from agents be handled? How will an agent

recognize the necessity to participate in a given conversation and what protocol will

be used for initiating and responding to various communications? How will an agent

perceive the existence of other agents?

5. How will the system be maintained? How will system resources be managed? As

the environment changes how can system stability be ensured? How will the system

respond to conflicting information, perceptions, or actions from different agents?

16

These characteristics and challenges provide a broad look at what may be addressed by-

agent system models.

2.3.2 Agent System Models and Specifications. This section reviews two ap-

proaches to agent system development. These approaches are presented as they apply

to formal representations that may be used in an automated synthesis tool. Challenges

that may be encountered during agent system design in which interaction with humans is

required are also addressed here.

2.3.2.1 Multiagent Systems Engineering (MaSE). MaSE attempts to an-

swer the question of "how to engineer practical multiagent systems" [6:1]. DeLoach's

expressed intent is to define a methodology that supports agent system synthesis from a

formal model. The languages used within this approach are the agent modeling language

(AgML), which is based on graphical representations, and the agent definition language

(AgDL) which is based on first order predicate logic. While 00 design techniques are

foundational for MaSE, this methodology modifies the semantics to capture unique agency

characteristics and system cooperation behaviors. AgML and AgDL have formal definitions

while 00 representations do not.

Perhaps the most outstanding distinction between this and other methodologies is its

handling of individual agents and components before completion of the system level design.

AgML provides a graphical representation of agents similar to many 00 object class

diagrams and defines "high-level features of multiagent systems" [6:3] with five diagram

types assisting in MaSE agent system development as examples depict in Figures 4, 5,2 6,

7, and 8. Four key steps to agent system design in the MaSE methodology are outlined

below: domain level design, agent level design, component design, and system design.

Class-name
Services
Goals

Figure 4. AgML Agent Class Model [6]

2Note that the two main blocks in Figure 5 match the agent classes described in Figure 4

17

Info-Source
Register

Info-User

Register

Unregister

Provide Updates

source
Unregister

user

source
Provide-update

user

Update registered

users

source user Perform data

analysis

Figure 5. Conversations in AgML [6]

Conversation

<7 V

Sendlnfo CollectData

SendTasking SendStatus

Figure 6. AgML Communication Hierarchy [6]

(wait J

""■■"-.

send(information)

N ^ ^ [inyälid-date]Afailure-transmission

send(information) validation
^.__ -^

do: validate(information)
^ ;-_ >

i

[valid-data ^acknowledge

¥
®

Figure 7. Communication Class in AgML [6]

18

/ y

/

/
Room
Manager Resource

Monitor
/

/

/ "" / y s
/

Class
Scheduler 1

Class
Scheduler 2

/

Figure 8. Deployment Diagram in AgML [6]

1. During domain level design the software engineer identifies the types of agents that

will be used and develops the interactions (conversations) that will occur between the

agents. Conversations are mapped out in terms of the possible sequences of messages,

defined as coordination protocols. Four diagram classes are developed in this step:

agent class diagrams (Figure 4), communication requirement diagrams (Figure 5),

conversation class diagrams (Figure 7), and the communication hierarchy diagram

(Figure 6). While these diagrams appear much like 00 object diagrams, they addi-

tionally identify interfaces to the agent and the semantics of agent relationships via

conversations. Such classes are the basis for reuse; the structure can be extended for

specific agents while using the predefined structure.

Two general types of conversations are presented by DeLoach [6]: CollectData and

Sendlnfo conversation classes. These classes are shown with some subclasses in Fig-

ure 6. This diagram identifies the types of conversations that may be employed in

the agent system and depicts how these types relate to each other.

2. In agent level design the engineer uses three steps that further develop the model:

(a) Determine agent components by identifying actions in agent conversations.

(b) Define any data structures required by the communications.

19

(c) Define any data structures required for data flow between components within

the agent.

An additional agent level design objective is to reuse agent architectures whenever

possible.

3. Component design requires the engineer to develop the components identified in the

previous step. These designs are reused whenever possible and may include modules

such as planners, search algorithms, calculation routines, or learning algorithms.

4. Within the system design step the designer selects the number and types of agents

needed in the system. After selecting the agent types the designer determines exactly

how many agents of each type are required, defines the physical location of each agent,

specifies which conversations will be needed, and develops any other parameters that

are required by the domain model. The designer graphically captures these decisions

in a deployment diagram such as the example in Figure 8 to complete system design.

"[B]oth AgDL and AgML semantics are based on multi-sorted algebras" [6:7]. This

statement allows one to formally verify that each conversation will end and that it will end

in a particular state. The approach is claimed to be relatively easy to use and understand

because it closely resembles the 00 designs that many software engineers are accustomed

to using.

2.3.2.2 The Z Approach for Multiagent Systems. Section 2.2.2.1 presented

some of the basics of agent specifications using the Z approach of d'Inverno, et al. The

methodology is extended in a later work by d'Inverno and Luck [9] in which the framework

is extended to inter-agent relationships.

A multiagent system is built by merging the previously represented Z Schemas with

some additional attributes and objects. Entities group attributes together, NeutralObjects

are objects with no goals, and ServerAgents are agents with at least one motivation. Any

multiagent system's components can be represented by the schema in Figure 9 and inter-

actions between entities (objects, agents, and autonomous agents) can be modeled based

on this representation.

20

NeutralObject == [Object | goals — {}]
Server Agent == [Agent \ motivations ^ {}]

 Entity
attributes : P Attribute
capableof : P Action
goals : P Goal
motivations : P Motivation

attributes ^ {}

. MultiAgentSysComponents
entities : P Entity
objects : P Object
agents : P Agent
autoagents : P AutoAgent
neutralobjects : P NeutralObject
serveragents : P Server Agent

autoagents C agents C objects
agents = autoagents U serveragents
objects — neutralobjects U agents

Figure 9. Z Representation of an Agent System [9]

One key to a successful agent system is the ability of a specific agent to request help

from other agents to accomplish goals. This is achieved by transferring a goal from one

agent to another.

Another requirement for a productive autonomous agent system is cooperation among

the agents. Cooperation occurs in the system when two or more autonomous agents adopt

the same goal via direct engagement. Direct engagement describes the process of one entity

(the client) contacting another (the server) to activate a particular goal the client needs

help to accomplish. A series of direct engagements may be necessary before the goal can

be reached. Figure 10 concisely and formally describes this cooperation.

The multiagent system structure shown in Figure 11 is simply the combination of

several entity types. Within this framework the activities of individual agents and the

21

. Cooperation
goal : Goal
genagent: AutoAgent
coopagents : P AutoAgent

goal £ genagent.goals
V aa : coopagents • goal G aa.goals
-i (genagent €E coopagents)
coopagents ^ {}

Figure 10. Z Representation of Cooperation [9]

interactions between them are captured. Exactly how agents engage each other is the next

step; d'Inverno and Luck describe the way this is accomplished with agents filling the client

and server roles [9:6].

 MultiAgentSysStructure
M ulti AgentS ysComponents
SysEngChains
SysCoops

Figure 11. Z Representation of a Multiagent System [9]

2.3.2.3 Mixed-initiative agent systems. Hartrum and DeLoach [17] focus

on the mixed-initiative question: how to deal with the interaction between humans and

agents in a system. Their approach identifies specific ways interactions between humans

and agents differ from other interactions in an agent system as well as an approach that

formally captures those unique properties.

Preliminary assertions are made that agents are an abstraction beyond an 00 ap-

proach and that an agent may or may not possess intelligence. In this way the design

can capture the more complex intelligent agents as well as the more simply designed in-

put/response software systems.

The mixed-initiative system uses MaSE as the system design methodology, providing

the formal foundation for representations of agents and their interactions. The specifica-

22

tions are represented by a formal Z model and a state transition table in order to capture

the structural and behavioral aspects of the system. This model can be parsed into a syn-

thesis tool that verifies consistency and correctness, transforms the system into a formal

design model, and generates 00 source code.

At a basic level the mixed-initiative agent must have the ability to handle tables,

graphs, and various other representations in order to interact appropriately with a human.

The object is to provide the user with meaningful information that will assist his or her

interaction with the system.

Other issues that are unique to mixed-initiative agents are:

1. The agent architectures must have the capability of handling the roles of both client

and server. Sometimes the human has the information needed by the agent while

other times the agent has or can acquire information the human desires. Sometimes

the human and agent (s) must work together to discover the desired information and

reach a common goal.

2. Agents must deal with ad-hoc interaction with the human. Humans frequently ask

for or do things the computer (or agent in this case) has not seen before. Asyn-

chronous inputs from other agents must also be dealt with gracefully. The agent

must appropriately handle all circumstances.

3. The agent must handle both the human responses and queries made on behalf of the

human.

Ultimately the agent architecture must be tailored to the particular human and the problem

being solved.

Two types of conversations occur in these systems. Transaction based conversations

occur when a human is queried for something and answers with a "submit" response.

Incremental-based conversations require collaboration between agents and the human; all

participants respond to incremental changes in the data posted by others in blackboard-

style interactions.

Human/agent design issues center around several questions:

23

1. What queries will be made and what information will be transferred as a result of

those queries?

2. What will be the responses to queries and what information will be included in the

response?

3. What syntax will be used for communications?

4. What will be the form of information exchanged?

5. How will the information be presented?

The answers to these questions provide information required for automatic code generation

and support the hypothesis that "design decisions can be supported by a formally based

design tool that would aid the software engineer (agent designer) in specifying a specific

human/agent" [17].

2.3.3 Agent System Representation Summary. MaSE uses graphical and pred-

icate logic-based formal representations to develop agents and the systems within which

they operate. The method is well-suited to automated synthesis and has a mild learning

curve for those familiar with the 00 paradigm and UML representations. The Z approach

uses a formal language to present a well-defined structure of agents and agent systems

well-suited for automated synthesis. While there is still much work to be accomplished

toward the automation of agent system synthesis, the groundwork is in place for further

development and integration into existing synthesis systems.

24

III. System Models

Before transformations can manipulate an analysis specification into a correct design, the

initial analysis representation must be identified and the semantics of the model clarified.

Transformations, including those using designer input, manipulate the model into an al-

ternate representation that must also be unambiguous with predictable behavior. This

chapter presents views of both the initial analysis specification and the final design spec-

ification, following the paradigm of the DOM and GOM from AFITtool. A discussion of

agency follows with the definition of the use of the term within the context of AWSOME

and this research.

Specific attention is paid to those parts of specifications pertaining to the dynamic

model with graphical representations of object classes following an object "name: field

type" format in boxes with squared corners as demonstrated in Figure 12. Square brackets

("[" and "]") are used to denote sequences and curly brackets ("{" and "}") are similarly

used for sets. An object instance is presented in the same way, except with rounded corners

and the field type replaced by a representation of an instance of the type.

TypeName

typeAttributeA: AType

typeAttributeB: BType

Figure 12. Example Graphical Representation of a Type

3.1 Analysis Specification

The use of Z Schemas for the representation of 00 models are built with a I^TEX Z

format used for AFITtool specifications introduced by Hartrum [16]1; this chapter extends

and adapts his models to fully capture the dynamic model within the AWSOME structure.

AWSOME and Z representations capture identical semantics, requiring the examination

of only one; the AWSOME representation is selected for this discussion to facilitate a

comparison of the analysis and design models within the same framework.

1 Specification rules outlined in this chapter were developed in cooperation with Dr. Thomas C. Hartrum,
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.

25

The root node of any AWSOME specification is a package (Figure 13) containing a set

of declarations, a set of packages, and an identifier (Figure 14). Data type declarations and

class specifications are both captured in the declarations field of a package. An identifier

provides a means for naming the object, identifying the type, and providing a description.

Package

name: Identifier

decls: {Declaration}

pkgs: {Package}

Figure 13. AWSOME Package

Identifier

symbol: String

type: DataType

description: String

Figure 14. AWSOME Identifier

Data types are identified by name and, with the exception of the boolean type,

must be created from the type classes defined by the AWSOME inheritance hierarchy in

Figure 16. This figure provides a view of the types as well as the defined fields for each

type with the exception of Class which is detailed in Figure 15. The type Name is used

throughout this model and can be one of six subtypes defined in Figure 17.

Class

name: Identifier

superclass: Name

invariant: {Expression}

dataComponents: {Attribute}

operations: {Method}

states: {State}

events: {Event}

transitions: {Transition}

Figure 15. AWSOME Class

26

t-
1)

4-c

c u u ft Ti >%

es
Q

ü
S
CS
S3

<h

u s
C3

Z
<u D ft a-
H H *> X
S u fc "O
< c

u a. >>
c o

c
■C
C3
V-

F.
3 3
S3 CS w >

a>
x>

CO
•c

(D

CS

>
a. ^-*
s-.
H *-»
ID c
es

S3 o ft
60
<

S3
O o

tH <u
0*
tH
D

1) W
a. ■^

>> c
H
crt HH

(U
U D o a.
< >>

01 o a

S

Ö
«3

<L>
ft

Q
m
S o
CO

so

3
faO

• r-4

fa

27

3.1.1 00 Structural Model in AWSOME. Classes are defined using the aggre-

gation from Figure 15; the AWSOME class elements map directly to the Z structural,

functional, and dynamic models. These classes follow the 00 paradigm of inheritance,

but cannot inherit from more than one class as evidenced by the singular superclass at-

tribute. The invariant is represented in the tree as a set of boolean expressions, but may be

entered or handled as a single expression by using the logical conjunction of the set. Class

attributes are captured with the identification of the attributes' names, their types, and

their values (Figure 18) and may be defined as either a constant or a variable (Figure 19);

the "IdentifierRef" (Figure 20) is used within the attribute description and throughout

AWSOME as a pointer to object identifiers. The remaining four elements comprising the

class model are explored in the following two sections.

3.1.2 00 Functional Model in AWSOME. The Zfunctional model is represented

in the class' operations. Each operation appears in the AWSOME tree as a method (Fig-

ure 21) that contains a subprogram (function or procedure) which, in turn, contains input

and/or output parameters, pre-conditions, and post-conditions with the qualities listed

below. The graphical representation of the subprogram appears in Figure 22 with formal

parameters fitting the structure presented in Figure 23. Because the subprogram captures

the functional qualities of a class' operations, subprograms rather than methods are dis-

cussed throughout this chapter. The rules governing analysis specification of operations

follow.

Operation Specification Rule 1: The name identifies the operation and may be refer-

enced as an action in a transition.

Operation Specification Rule 2: A set of formal parameters identify inputs and out-

puts.

Operation Specification Rule 3: Pre-conditions are represented as a set of expressions.

Operation Specification Rule 4: Post-conditions are represented as a set of expres-

sions.

28

Name

name: Name

type: Name

value: Expression

TV

Dereference

name: Name

IndexedComponent

name: Name

index: Expression

This

Tick

name: Name

IdentifierRef

symbol: Name

pointsTo: Identifier

SelectedComponent

name: Name

component: IdentifierRef

Figure 17. AWSOME Name Type and Its Inheritance

Attribute

private: Boolean

name: Identifier

dataType: Name

data Value: Expression

homeClass: IdentifierRef

Figure 18. ÄWSOME Attribute

Variable ■*-

name: Identifier

type: Name

value: Expression

or Constant

Figure 19. AWSOME Variable and Constant

29

IdentifierRef

symbol: String

pointsTo: Identifier

Figure 20. AWSOME IdentifierRef

Method

private: Boolean

classMethod: Boolean

methodSubprogram: Subprogram

Figure 21. AWSOME Method

3.1.3 00 Dynamic Model in AWSOME. Dynamic modeling in Z matches the

AWSOME class' events, states, and transitions. The specification of the semantics for

each element is critical if correctness-preserving transformations are to be developed and

implemented.

3.1.3.1 AWSOME States. Each state is represented in the AWSOME tree

as in Figure 24, and must follow the rules listed below. Each state is defined by a name

and by a set of boolean expressions, the state invariant. The domain of variables in the

invariant is the class' attributes and may or may not include a "state variable," whose sole

purpose is to identify the state of the object. Substates are presented as a part of a state

in Figure 24 but are not handled in this thesis.

State Specification Rule 1: A name is required for identification.

Subprogram

name: Identifier

preconditions: {Expression}

postconditions: {Expression}

formals: [Parameter]

Figure 22. AWSOME Subprogram in Analysis

30

Parameter

name: Identifier

type: IdentifierRef

in: Boolean

out: Boolean

Figure 23. AWSOME Parameter

State

name: Identifier

invariant: {Expression}

substates: {State}

Figure 24. ÄWSOME State

State Specification Rule 2: A set of boolean expressions denote an invariant for the

given state; an invariant is required.

State Specification Rule 3: The invariant "state — Si" making use of a "state vari-

able" is optional.

3.1.3.2 AWSOME Events. Events define information that can be sent

between objects. Each is captured in the AWSOME AST by a name, the associated

parameters, and the constraints imposed on those parameters (Figure 25). If the event

is received, data of the identified type(s) is understood to be received from an external

source. While events specified in Zaxe not associated with a particular class, the AWSOME

model defines all associated events within each class that may send or receive those events.

Specification rules below provide guidelines that must be followed when specifying events.

Event

name: Identifier

parameters: {Parameter}

constraint: {Expression}

Figure 25. AWSOME Event

31

Event Specification Rule 1: A unique name for each event is required for identification.

Event Specification Rule 2: Parameters identify all data items transferred with the

event.

Event Specification Rule 3: An expression specifies the constraints imposed on the

parameters.

Event Specification Rule 4: Any parameter identified in the constraints must be de-

fined within the event.

Event Specification Rule 5: Parameters and the constraint are optional.

3.1.3.3 AWSOME Transitions. Figure 26 presents the structure of an

AWSOME transition with its six possible entries; two fields are required in every transition:

CurrentState and NextState. These six entries specify the interactions of the class' states,

events, and operations.

Transition

currentState: IdentifierRef

receiveEvent: IdentifierRef

guard: Expression

nextState: IdentifierRef

action: SubprogramCall

sendEvents: {SubprogramCall}

Figure 26. AWSOME Transition

CurrentState provides the name of the object's current state for entry into the tran-

sition while the ReceiveEvent, also referred to as the causal event, is the name of the event

triggering the transition. The Guard, or guard condition, is a boolean expression pertain-

ing to received event parameters and/or class attributes. The absence of a received event

defines an automatic transition with the guard condition alone determining whether the

transition is to occur. The absence of both the received event and a guard condition is a

special kind of automatic transition in which the transition will occur immediately upon

entry into the identified current state.

32

The Action includes the name of the operation from the functional model that must

be performed prior to any SendEvents (identified by name) during the transition. Sec-

tion 2.1 presented the use of both actions and activities. The concept of actions in that

section relates directly to the Action in the AWSOME transition; there is no provision in

AWSOME for activities.

NextState provides a postcondition for the transition, identifying the name of the

object's state after the transition. It is understood that the results of receiving the event,

meeting the guard condition, and performing the action within a transition guarantees the

satisfaction of the next state's invariant. The one exception is that a state variable as

defined in Section 3.1.3.1, if not updated within the action, must be set appropriately at

the end of the transition.

Transition specifications must conform to the rules below.

Transition Specification Rule 1: The fields are defined as follows and have the inclu-

sion requirement identified below unless specified otherwise by another rule.

1. CurrentState is the name of the current state (mandatory).

2. ReceiveEvent is the name of the causing event (optional).

3. Guard is a boolean expression (optional). The absence of a Guard is interpreted

as "true."

4. NextState is the name of the next state (mandatory).

5. Action is the name of any action (optional).

6. SendEvent is any event that is sent to another object (optional).

Transition Specification Rule 2: There is exactly one startup transition.

1. CurrentState is "START."

2. ReceiveEvent is empty.

3. Guard is empty.

4. NextState is the name of the next state.

33

5. Action is the name of any startup action (optional).

6. SendEvent is any event sent to another object (optional).

Transition Specification Rule 3: There is exactly one shutdown transition.

1. CurrentState is the name of the current state.

2. ReceiveEvent is the name of the causing event (optional).

3. Guard is the guard condition (optional).

4. NextState is "END."

5. Action is the name of final action (optional).

6. SendEvent is any event sent to another object (optional).

Transition Specification Rule 4: Parameters are "connected" using matching names.

1. Action input parameter names match ReceiveEvent parameter names.

2. Action output parameter names match SendEvent parameter names.

3. There are no other Action input or output parameters.

4. ReceiveEvent parameter names may have the same names as SendEvent param-

eter names, but these represent different variables.

5. ReceiveEvent invariants act as Action pre-conditions.

6. SendEvent invariants act as Action post-conditions.

7. The Action defines (via post-conditions) any manipulations of:

(a) Attributes as they relate to ReceiveEvent parameters.

(b) SendEvent parameters as they relate to ReceiveEvent parameters.

(c) SendEvent parameters as they relate to attributes.

Transition Specification Rule 5: The domain of variables in a Guard includes the class

attributes and ReceiveEvent parameters.

34

3.2 Design Specification

While the AWSOME AST provides for specifications of entire software systems, this

research assumes certain aspects will be implemented independently from automatically

generated code. A "listen"ing process will run concurrently with an AWSOME-generated

system for the purposes of receiving requests from external entities (perhaps using differ-

ing protocols), managing the requests according to specified protocols (discussed in Chap-

ter IV), and calling the appropriate "receive" subprogram outlined below (Section 3.2.2.2).

Information is sent to other entities through a "send" subprogram (Section 3.2.2.2) that

performs a call to a communication protocol-specific subprogram supplied apart from the

AWSOME models.

The AWSOME design model does, however, provide the means for stepping through

the transitions and performing the correct Actions and SendEvents in the correct order

at the correct time. A "while" loop containing selection statements provides checks for

each allowable CurrentState-ReceiveEvent-Guard combination to ensure the proper Ac-

tions, SendEvents, and changes to the NextState state will commence as dictated by the

specification. An assumption is that the "listen" er mentioned above can run simultane-

ously to this "while" loop, receiving the ReceiveEvents and setting the appropriate class'

attributes for interpretation within this loop.

While the same AWSOME tree is used to model both the analysis and design spec-

ifications, the portions of the tree in use shifts from the dynamic model elements to the

more extensive use of operations. The dynamic model is, in fact, unnecessary after the

appropriate transformations are accomplished (Chapter IV). To those classes with tran-

sitions, events, and states specified, operations and attributes are added for an alternate

and full representation of dynamic model semantics.

A notable distinction between analysis and design models is the altered presentation

of class operations (Figure 27 as compared with Figure 22). The pre-conditions and post-

conditions are no longer represented but are replaced by a sequence of statements and a set

of variables and constants. Statements fall into one of the six subclasses of the AWSOME

statement inheritance hierarchy shown in Figure 28.

35

Subprogram

name: Identifier

formals: {Parameter}

locals: {DataObject}

body: [Statement]

Figure 27. AWSOME Subprogram in Design

3.2.1 Additions to Class Attributes. The attributes of a class must be augmented

to provide storage for the information required by additional subprograms (Section 3.2.2).

Included in the design model are attributes to store the parameters from each event re-

ceived or sent, as shown in Figure 29. Another attribute, identified in Figure 30, is created

and added to the class attributes to track the received event name while a similar attribute

named "transitionNum" is added for identification of the transition currently being han-

dled.

3.2.2 Additions to Class Operations. Several operations are added to the class

to capture its dynamic nature. A single subprogram (named "transitions") captures the

behavior of all transitions while one subprogram is required to implement each event in

each direction; for example an event "Event < X >" could be sent and/or received leading

to the creation of subprograms named "sendEvent< X >" and/or "receiveEvent< X >"

as required.

3.2.2.1 Subprogram "transitions" Specification. The subprogram "transi-

tions" directly reflects the semantics of transitions specified in Section 3.1.3.3. It has no

formal or local parameters since event parameters are stored in class attributes and the

only information passing between elements of a transition are event parameters. Every

transition maps to a selection statement modeled in Figure 31. "Currentlnvar" and "Nex-

tlnvar" in this figure refer to the boolean expression from the relative state's invariant.

"ThisEvent" is the place holder for a boolean expression comparing the value in "re-

ceivedEvent" to the ReceiveEvent's name while "ActionCall" and each "SendCall" identify

subprogramCalls to the related operation (event operations are discussed below). The last

36

Jump

target: Name

Assignment

LHS: Name

RHS: Expression

Statement

£

BasicStatement

71

LabeledStatement

body: BasicStatement

labels: {Label}

ProcedureCall

subprogCall: SubprogramCall

Selection

condition: Expression

thenPart: [Statement]

elsePart: [Statement]

Iteration

condition: Expression

iterBody: [Statement]

Figure 28. AWSOME Statement inheritance Hierarchy

Attribute

private = true

name = parameterName

type = parameterType

homeClass = parameterClass

Figure 29. Example Attribute Instance Created from an Event Parameter

Attribute

private = true

name = "receivedEvent"

type = "string"

homeClass = eventClass

Figure 30. Example Attribute Instance for Storing an Event Name

37

two statements in the "thenPart" include the clearing of "receivedEvent" and the setting

of the state variable if applicable.

Selection

condition = Currentlnvar AND ThisEvent AND Guard

thenPart = [transID = tX, ActionCall, SendlCall, Send2Call,. ., receivedEvent ="",

transID = 0, state = NextState]

elsePart = []

Figure 31. Example Selection Statement Instance Based on a Transition

A SendEvent may be used in several transitions using different information passing

protocols; the same event could be sent to both a human interface, providing mixed-

initiative activitiy, and to another object for inter-object communications. The "transID"

attribute is used for transition identification within a "sendEvent< X >" operation. The

value of this attribute is automatically set by the related transition, each transition using

a unique "transID" value. The setting and resetting of this value is reflected in Figure 31.

The set of selection statements generated from transitions (as in Figure 31) is em-

bedded in an iteration statement's body, Figure 32, with the iteration condition matching

the negation of the "END" state's invariant. This representation ensures the transitions

continuously cycle as specified until the object is intentionally terminated. The complete

"transitions" subprogram is represented in Figure 33; the placement of "transitionltera-

tion" represents the embedding of Figure 32 within the body of the subprogram.

Iteration

condition = NOT (State = END)

iterBody = [transStmtl, trasnStmt2,...]

Figure 32. Example Iteration Statement Instance for "transitionlteration"

3.2.2.2 Subprogram "sendEvent< X >" and "receiveEvent< X >" Specifica-

tion. One subprogram is created for each event appearing in the ReceiveEvent field of

a transition and another for each event referenced in the SendEvent field. These subpro-

38

Subprogram

name = "transitions"

formals = []

locals = []

body = [transitionlteration]

Figure 33. "transitions" Subprogram Instance Structure

grams serve as the interface between the "transitions" subprogram and external sources

of, or targets for, information transfer.

For received events the subprogram is named "receiveEvent< X >" and has formal

"IN" parameters matching the event parameters. The statement body performs several

tasks, the first of which is a verification that the input does not violate the event constraints.

The second task is verification that the "receivedEvent" attribute does not already contain

an entry (the assumption is that the class can deal with only one ReceiveEvent at a time,

ignoring all other external inputs). The third task is checking for validity of the event

according to the transition table; if the event is not dealt with in the object's current

state, it is ignored. If the first three tasks are fulfilled, the final task is the setting of

appropriate class attributes. Appropriate class attributes include those variables matching

the event parameter names and the assignment of the event's name to "receivedEvent."

An example of this subprogram is presented in Figure 34. The "receiveEvent< X >"

subprogram must be called by "listen" discussed at the beginning of this section.

Subprogram

name = receiveEventX

formals = [IN EventXParaml, IN EventXParam2]

locals = []

body = [if (receivedEvent = "" AND eventX.constraint = true)
then (set attributes)]

Figure 34. Example "receiveEvent< X >" Subprogram Instance

Send events' subprograms are similarly named "sendEvent< X >" but have no for-

mal parameters (Figure 36). The body of these subprograms performs two functions,

39

determining which transition is in execution and performing the appropriate send. To

ensure the correct send is called, a sequence of selection statements is generated, one

for each transition calling the send. These selection statements' "condition"s check the

"transID" attribute to ensure the Send for the correct transition is performed. The "then-

Part" consists of a single subprogramCall (Figure 35) to be identified by the designer; this

subprogramCall must have as arguments the value(s) of the event's parameters.

SubprogramCall

type: DataType

name: Name

args: [Expression]

Figure 35. AWSOME SubprogramCall

Subprogram

name = sendEventX

formals = []

locals = []

body=[if(transID = tX)
then (call subprogram)]

Figure 36. Example "sendEvent< X >" Subprogram Instance

3.3 Handling Agency

As identified in Chapter II, no single, widely-accepted definition of agency exists. The

approach in this research assumes agents are special kinds of objects, a viewpoint shared

by Luck [29] and DeLoach [6]. Along with this assumption, two concepts are adopted here

as keys for defining agency. First, agents are developed differently from general objects

by imposing a common messaging language for inter-agent communications [6,11,23,24].

Second, agents are not merely passive entities reacting only when required by external

stimuli [6,13,24,29]. The former element is addressed within the context of AWSOME

while the second is not; nevertheless, the proactive aspect of agency for the purposes of

this work is also discussed here.

40

The approach to agent system design in this thesis requires generic 00 objects to

be defined apart from specifications of the various aspects of agency; this treatment of

objects implies they are components in a larger "agent" entity. Once the specification of

objects is represented in AWSOME, the designer specifies those which are to be treated

as agents, the communication protocols to be implemented, and any other agent-specific

details. Components to be integrated must be available for incorporation into the class

models. Implied here is prior definition (within analysis models or existing code) of the

items to be incorporated. Any elements not specified must match procedure or function

calls that will be available upon implementation in the language desired.

The classes and types above are all contained within a single package, and are initially

independent of agent-specific domain models and the associated communication protocols.

The domain specifications of various systems are maintained in different packages for in-

tegration with other specifications during design.

3.3.1 Inter-Agent Communications. Agent systems and the OMT or UML mod-

els used for AWSOME research thus far manage inter-object communications very differ-

ently. While object models do not provide a means for specific instance-to-instance inter-

actions, agent systems require that communications be directed between specific agents.

Message passing in prior AWSOME models has been handled by events through which an

object has no control of the received event's origin or the sent event's destination; a key

assumption is that sent information is received appropriately. One recognized difference

between object theory and instance theory is that when one instance sends an event, other

object instances may or may not receive the event, depending on the potential receivers'

current states and the acceptable receive events for those states.

When an agent sends a message it typically must know exactly which agent (s) will

receive the message. Because the object models supported by AWSOME do not support

this specification, either design transformations must incorporate this concept or the anal-

ysis specification model must be extended to object identification for message passing as

identified below. Transmission of messages among agents can be summarized by two cases:

in one-to-one message passing, information is sent from an object to another specified ob-

41

ject; in multicast messaging, information is sent from an object to a set of specified objects.

All communications can be modeled by using combinations of these two classes of message

passing. For example, suppose a room manager agent maintains information about a set of

non-reserved rooms and wants to know how many reserved rooms are maintained by room

user agents; the manager sends a multicast message to all users requesting the respective

numbers, and the users respond with a one-to-one message.

Identification of target objects for communications must be considered. Static iden-

tification occurs when an object is designed with the information required for connection

to another specified object, whereas dynamic identification requires runtime detection of

the required message recipients. This research expects the designer to set attributes and

include procedures for the desired communications apart from the steps outlined here.

Agent messaging languages and protocols appear in many varieties as well, and can

be incorporated during the transformation process. To facilitate various agent communi-

cation systems, agent and agent system models are specified without clarification of the

type of message passing to be used. Conversations such as those used in MaSE can be

represented by mandating sequences of class states; for simplicity this research disallows

simultaneous handling of conversations. After the specification is represented in the tree

and the transformation process has been initiated, the designer is required to select the

desired messaging protocol (such as JAFMAS [3] or agentMom [7]) and the applicable code

segments are automatically incorporated into the final product.

During system analysis and specification it may be possible to identify the number of

instances and the specific communications that may occur between them. For example, a

system may be desired in which two room user agents interact with a single room manager;

decisions can be made during analysis regarding the handling of message passing between

the agents. One such solution makes use of a message class with a naming convention

implemented by an agent class (Figure 37) that can simplify message passing among several

agents. Before sending a message the agent sets its msg values according to its own name,

the names of the intended recipients, and the information the agent wishes to convey. The

performative field in the msg is set to describe the purpose and contents of the message.

A key to proper message passing is the assurance that any message sent will be received

42

! Message
sender : NameJType
receiver : P Name-Type
performative : seq CHAR
content: Object

, Agent
name : Name-Type
msg : Message

Figure 37. Z Representation of the Message and Agent Classes

by the appropriate agent. While this factor could be modeled in the analysis step, it is

assumed to be true for all agent communication.

This research approaches communication by accepting object designs devoid of ex-

plicit messaging protocols or the added class attributes of the Agent class in Figure 37. The

designer selects existing communication elements which are then integrated into the design

during transformation. Transformations and code generation, therefore, must account for

proper and complete message passing while integrating design decisions.

3.3.2 Proactive Behavior. Defining the reactive or proactive quality of agents is

not a simple task. Because a great variety of approaches exist for modeling independent

agent activity, this research requires the system specifier either to model this aspect of

agency within the framework specified (Section 3.1) or to provide appropriate existing code

or design specifications. While it is assumed here that non-reactivity and the components

that cause this behavior can be integrated in the initial analysis specification, this thesis

focuses primarily on objects rather than on a particular form of behavior. If a preexisting

component must be used, appropriate events calling those components must be included in

the specification and the associated design decisions for integration must be made during

the transformation to code.

43

3.4 Model Summary

This chapter identifies the AST structure for specifying analysis models, presenting

the syntax and semantics of the 00 dynamic model as used within AWSOME. Design

models are also specified according to the transformations that will be applied and the

structure of AWSOME representations. Analysis models are defined as consisting of data

types and class representations, each class including attributes, operations, states, events,

and transitions. Because the 00 dynamic model is to exist only in analysis specifica-

tions, the states, events, and transitions are transformed into operations and attributes in

the design specification. Design model operations are also represented with sequences of

statements rather than with the pre- and post-conditions of analysis models.

Elements not specified in the analysis model can be incorporated if they match sub-

program calls from "sendEvent" or to "receiveEvent" subprograms or if subprogram calls

are specified in a class' operations; such elements may include the incorporation of intel-

ligent agent characteristics. Agency is defined for this thesis' context but the handling

of agent characteristics are limited to the structured messaging aspects of a class; auto-

nomicity is assumed either to be specified within the agent/object or to be accessed via

supbrogram calls.

44

IV. Transformations

Having defined the structures that contain the analysis and design specifications, this chap-

ter now develops the specific transformations for moving from one to the other. AFITtool

DOM to DOM transformations for the dynamic model first proposed by Hartrum [15]

focus on the conversion of 00 dynamic model components into 00 functional model com-

ponents, transforming static Z schema representations of event definitions into dynamic Z

Schemas. His transformations provide a new "Do<EVENT_NAME>" procedure for each

event in the system by merging automatic transitions with their related non-automatic

transitions, creating input parameters from event parameters, and adding an implication

statement for each corresponding row of the state table. He also provides an approach for

collapsing automatic transitions (transitions without causal events) into non-automatic

transitions.

In this research a different scheme is used for dynamic model-to-functional model

transformation within AWSOME; the event, current state, and guard condition have equal

weight in determining what action to perform next. The set of class operations are extended

to include operations for sending and receiving events, and the activities resulting from

automatic transitions are merged into other appropriate sequences of operations. Designer

decisions assist the automated transformation process by identifying information such as

which objects are considered agents and what communication protocols or procedure calls

are required in the final code. The first transformations identified in Section 4.1 outline the

process for integrating domains into the specification and creating sub-packages as desired

by the designer. Section 4.2 steps through the process of developing the operations and

adding attributes as required before code generation can begin. Examples in this chapter

are drawn from the Room User found in Appendix A.4.

4-1 Incorporating Additional Domains

The designer may desire to integrate pre-defined domain specifications into the sys-

tem such as agent communication characteristics, components of a planning system, or a

reasoning engine. While this research does not implement domain integration, possible

45

methods for accomplishing such component assimilation into the specifications addressed

thus far are addressed here.

Classes and other data types in the analysis model are initially maintained in a single

package, but the designer may choose to create several packages, each with specifications

pertaining to a particular type of object in the system. Additional domains such as an

agent class and support for a particular message passing protocol can be specified and

maintained in separate packages.

Once transformations begin, the designer could be presented with the option to inte-

grate additional domains into the existing system by selecting the package to be integrated

(by name), identifying the integration method for each type (including classes) in the sys-

tem, and allowing the AWSOME transformations to perform the information assimilation.

Three methods for integration may be used:

1. Add the type to the package.

2. Add the type's information into another type (limited to the integration of two class

types).

3. Add the type as a superclass to an object (limited to the integration of two class

types).

Sometimes only certain aspects of a domain are desired, adding a fourth option:

4. Do not add the type.

In each of the integration options identified here the specifications remain in the framework

presented in Section 3.1. When options 2 or 3 are selected, it may be desirable to separate

classes into packages for easy identification; this option is presented to the designer. A

key issue that requires attention is name conflict resolution, since the rules outlined in

Chapter III must also apply to the integrated system. Another area that would require

further analysis pertains to domain limitations: should a given domain be eligible for

integration with any other domain? These issues are not addressed here, but are left for

future work.

46

4-2 Dynamic Model Transformations

Specification of dynamic model semantics in Chapter III provides the formalization

necessary for a complete and accurate transformation into an alternate representation. Z

class specifications as used in AFITtool are parsed into or otherwise accurately represented

by the AWSOME tree prior to model manipulation. Section 4.2.1 describes the notations

used in predicate calculus expressions developed below for capturing the transformations

of the four constructs in Section 3.2: attributes, send event operations, receive event

operations, and the "transitions" operation. The notations used in this chapter's figures

follow:

1. Arrows show the source and destination of information used in a transformation.

2. Arrows originating at the top or bottom of a diagram indicate the entire object is

used for transformation purposes.

3. Arrows originating at either side of a diagram indicate that the attribute correspond-

ing to the arrow's position is used for the transformation.

4. Merging lines indicate that the multiple sources are used for transformation.

5. Diverging lines indicate that the same information is used in more than one step of

the transformation process.

6. An arrow such as the following indicates that the destination consists entirely of

information from the source: »~

7. An arrow such as the following indicates that the destination is generated by using

the source and some additional information: «»

8. An arrow such as follows indicates information from the source is used to find data

for the transformation that originates in the destination: >-

9. A comma (,) is used to separate elements in sets and sequences.

4-2.1 Formal Notations. To formalize the transformations discussed in this chap-

ter, this section defines notations used and expresses the results of the transformations

within predicate logic equations. Because "string" names are the primary ingredients for

47

many transformations, many of the variable types below are represented as this type rather

than the types presented elsewhere in this chapter (such as Identifier or IdentifierRef). Ex-

pressions are not detailed here, but are preceded below by the associated type as applicable;

strings can fill the role of an expression only when they reference another object.

1: The "universe" used for equations is limited to the package in which the specification
is maintained

2: An input from a source external to the package is annotated by the word INPUT

3: Equality is indicated by the symbol =

4: Assignment is indicated by the symbol :=

5: The variable type is declared by the symbol : followed by the name of the type

6: Sets are indicated by the pair of symbols { and }

7: Sequences are indicated by the pair of symbols / and]

8: Items from sets are separated by , when explicitly delineated

9: Items from sequences are separated by , when explicitly delineated and are assumed
to appear in the order required by the sequence

10: A sub-field of any composite type is indicated by use of the "dot" such as E.name
or O.formals

11: String concatenation is indicated by the symbol +

12: The concatenation of sequences is indicated by the symbol '—-

13: A sequence is generated from a set by applying the "toSeq" operator; the order pro-
duced is arbitrary

14: A single expression capturing the disjunction of a set of expressions is generated by
applying the "orExpOp" operator

15: An element of type Event is represented by the symbol E with subelements

1. name : string

2. parameters : [P] — (P defined below), note that the analysis model has a set
of parameters that must be put into some sequence before transformations

3. constraint : boolean expression

16: An element of type State is represented by the symbol S with subelements

1. name : string

48

2. invariant : boolean expression

17: An element of type Transition is represented by the symbol T

1. event : string

2. current : string

3. guard : boolean expression

4. next : string

5. action : string

6. send : {string}

7. number : M This is a unique number assigned by the transformation system.

18: An element of type Attribute is represented by the symbol A

1. name : string

2. dataType : string

19: An element of type Parameter is represented by the symbol P

1. name : string

2. dataType : string

20: An element of type Subprogram is represented by the symbol O

1. name : string

2. formals : /P/

3. body : /ST/

21: An element of type Statement is represented by the symbol ST. This type must be
implemented as a Selection, SubprogramCall, Iteration, or another Statement type.
The three listed here are the only Statements specified and used below.

22: An element of type Selection is represented by the symbol SS

1. condition : boolean expression

2. thenPart : /ST/

23: An element of type Subprogram Call is represented by the symbol SC

1. name : string

2. args : /expression/

24: An element of type Iteration is represented by the symbol I

1. condition : expression

2. iterBody : /ST/

25: An element of type Equality Expression is represented by the symbol EE

49

1. LHS : expression

2. RHS : expression

26: An element of type Assignment Statement is represented by the symbol AS

1. LHS : string

2. RHS : expression

27: An element of type Class is represented by the symbol C

1. attrs : {A}

2. ops : {O}

3. events : {E}

4. states : {S}

5. trans : {T}

6. invariant : {expression}

4-2.2 Adding Class Attributes. Each class is augmented with a number of at-

tributes to facilitate data transfer from the dynamic model's Events to Actions and from

Actions to Sends. This transformation step is quite simple, adding attributes to the class'

set of dataComponents; the names and dataTypes of these attributes match the names

(prepended by "temp") and types of the events' parameters in the set of Sends and Events

from class transitions as illustrated in Figure 38a.

Additional attributes are added to identify the name of a received Event and the cur-

rent transition in progress. These attributes have the names "receivedEvent" and "tran-

sID" respectively, as shown in Figure 38b. An assumption here is that the "String" type

(sequence of characters) and "Natural" type (the set of positive integers) exist, or will

exist as an available type after code generation. The attributes added to the specification

during transformations comply with the following two equations:

Transformation Requirement 1: Ve : E,p : P,i : T,c : C |

(e G c.events Ai£ c.trans A e £ ({t.event} U t.send) Ap£ e.parameters)

=>• (3 a : A | a.name = Hemp"+p.name A a.dataType = p.dataType Aa6 c.attrs)

Transformation Requirement 2: Vc : C |

(31: T, e : E 11 € c.trans A e.name = t.event) =>

50

Event

^ ^

Attribute

name.symbol = "MenuChoice"

parameters - {c: Natural}

^ constraint = {true}

private = true

name.symbol = "tempc"

dataType = Natural

homeClass = RoomUser

a)

Attribute Attribute

private = true

name.symbol = "transID"

dataType = Natural

1 homeClass = RoomUser

private = true

name.symbol = "receivedEvent"

dataType = String

homeClass = RoomUser J

b)

Figure 38. Creating Attributes from Events

(3a : A | a.name = "receivedEvent"A a.type — String A a G c.attrs)

A (3a : A | a.name = utransID"A a.type = A/" A a e c.attrs)

4-2.3 Adding Operations for Received Events. For each event RE that can be

received by an object, an operation named "receive< RE >" is added to the class' set

of operations. This operation is called by the class' "listen"ing component to verify the

validity of received parameters and to set class attributes as required whenever the listener

receives the corresponding event.

The operation "receive< RE >" is created with formal "IN" parameters matching the

event parameters and with a body consisting of a single selection statement. The condition

of the selection statement corresponds to RE's constraint conjuncted with the disjunction

of the invariants defining all states that can receive this event, as defined in the set of

transitions; this ensures not only that valid data is received within the event but also that

each event is received only if the object is in a state that can deal with it. The statement's

thenPart performs the two functions identified in Section 3.2.2.2: set "receivedEvent"

and other applicable class attribute values. Both of these functions are captured in an

51

assignment statement with the RHS matching the value of a parameter and the LHS

matching the name of the corresponding class attribute. The attribute "receivedEvent" is

set by creating an assignment statement with the RHS holding the literal string value of

the event's name while the LHS is the name of the attribute "receivedEvent." The process

for creating an operation for a received event is depicted in Figure 39.

The operations added as a result of received events are represented in the following

formula:

Transformation Requirement 3: V e : E, c : C |

(e 6 c.events A (31: T | t € c.trans A e.name — t.event))

=>■ (Bo: O | o.name = ("receive" +e.name) A o.formats = e.parameters

A (3 ss : SS, invars : {expression} \ o.body =[ss]

A invars = orExpOp{s : S,t : T 1t G c.trans A t.event = e.name

A s.name = t.current • s.invar} A ss.condition = (e.constraint A invars)

A ss.thenPart = [receivedEvent:— e.name] ^ toSeq{p : P |

p e e.parameters • Hemp" -\-p.name :— p.name})

A o £ cops)

4-2-4 Adding Operations for Send Events. For each event SE that can be sent by

an object, an operation named "send< SE >" is added to the class' set of operations. This

operation is called at the appropriate time(s) by the "transitions" operation (Section 4.2.5)

and performs the function of determining which send to execute (the same event could be

sent using different protocols during different transitions).

The operation "send< SE >" is created with no formal parameters and a body

consisting of one selection statement for each transition that can send SE. The condition of

the selection statements correspond to an equality check between the "transID" value and

the possible transition. The "thenPart" is a subprogram call with arguments corresponding

to SE's parameters. The subprogramCall's name cannot be determined automatically

because it is designated by the communication protocols selected by the designer. The

name is entered by the designer when prompted by the system and then set in the design

specification. The process for creating an operation for a send event is depicted in Figure 40.

52

♦

♦
f

">>
\

ex >>
U CD x: U

£

x

1 o
o o s t>
Pi o jy

E

<
CJ >

'53
o

Pi
ö

II

on
•a

cd

a
oo
o ii II
Q.

X>
cj C3 >>

3 CO O
CO B <HS X)

V J

ii
1

|

I

1

1 _/

1
~~- 4.

1 (

C

>1

D. E ca ->
U o
xj C ü

£ «>
6 , 2 o
o II t-

QC r/i

< <]> c
II 1> B)

c
CJ

cj 5
L-

e c3 c
c3 ■a n

P-l a ex CJ

V

, V
\

o
^ *
e t-
o II
o

CJ
'3 *
£ ex = f=
It <u
a>
ca >*

ex

o
C3 u

xs

a. £
CB £

o
o

> B:
<

II -
m II

ca -t-»
B
CJ >

U W
Z T3

CJ > <
CJ (1)

S O

■^ u
II

c c II
o o e •^ ca
o
ft) T3 u.

ri
<u

CO
O
O

CJ
X!

4 i
-. _ w

£
00
ej

CO

ca

a
ca
«
a >>
U ex

C3
B U
to X
F
o
o
Pi

o
X!

£
Q

E
o

Z o

CO CO <

3 3
B B

H CJ CJ

X s s
w a a z eu P.

>-. >-,
Q. ex
ca ca
U U
X X

£ £
H
Z Fi E

o o
W o o
> PS Ps w < <

U
£
£ >.

H o
o

ex
ca

Z C* O
P4 01) oo
OS _E _E

U
ca ca

u
ao
B •a

>>
ex
ca
o

•a

£ -
«2
ca

co

A

•c
ta
55

E
o
o

Pi
00

ca

II
CJ

A

E
o
p

faO c
^o
c
ca
ffl
%

a

53 u o

,o

Ö
O

cy
a
O
00
a

'■4-3
CO
a> u
Ü

C35
CO

CU
u
S
bO

fa

53

The operations added as a result of send events are represented in the following

equation:

Transformation Requirement 4: Ve : E,c : C |

(e G c.events A (31 : T 1t G c.trans A e.name G t.send))

=$■ (3o : O | o.name = usend"+e.name A (Vt : T |

(t G c.trans A e.name G t.send) => (3 ss : SS, sc : SC |

scname = INPUT A sc.args —[pi : P,p2 : P |

pi G e.params A p2.name = Hemp" +pl.name A p2.type = pl.type • p2/

A (3ee : EE | ss.condition — ee A ee.lhs — "transID"A ee.rhs = t.number)

A ss.thenPart =[sc]A ss G o.body)) A o G cops)

4-2.5 Adding the "transitions" Operation. The "transitions" subprogram is the

central piece of the dynamic model's functional representation. It is significantly more

complex than the operations added thus far, but is created without any interaction with

the designer. The single statement comprising the body of this subprogram is the iteration

statement from Figure 32.

The transformation steps for creating the transition selection statements are straight-

forward, with three conditions and some number of subprogramCalls and assignment state-

ments in the thenPart. The process for developing this statement is demonstrated in Fig-

ure 41. The first subprogramCall must correspond to the Action if one is required and

any other subprogramCalls must correspond to Sends. In both cases there are no formal

parameters because all required information is accessible within class attributes. Assign-

ment statements include two for setting "transID" appropriately at the beginning of the

thenPart and setting it to 0 at the end; an assignment for the state variable is included as

necessary. There may be methods for optimizing this subprogram by merging automatic

transitions' selection statements into those of non-automatic transitions; these methods

are left for handling by further research.

54

Event

name.symbol = "AR WC"

parameters = [rwc: RWC]

constraint = {true}

Subprogram

name = "sendARWC"

formals = []

locals = []

body = [CreatedSelectionl,

CreatedSelection2]

_L
Selection

condition = (transID = 6)

thenPart = [CreatedSubprogramCalll]

elsePart = []

\
I
I

+
I

Selection
i

condition = (transID = = H)

thenPart = [CreatedSubprogramCall2]

elsePart = []

SubprogramCall

name = INPUT1

args = [temprwc: RWC]

SubprogramCall

name = INPUT2

args = [temprwc: RWC]

Transition Table Segment transID

CURRENT SEND

GettingRWC ARWC

WaitingCapy ARWC

6

11

4
/

Figure 40. Creating Operations for Send Event Handling

55

Transition

currents täte, symbol = "WRWC"

receiveEvent = "ARWC"

guard = (bldg != Zero)

nextState.symbol = "WRWC"

action = AddRoomsInC

sendE vents = {ACapy}

"7

State

name.symbol = "WRWC"

 invariant = (state = wrwc)

State

name.symbol = "WRWC"

invariant = (state = wrwc)

Selection

condition = (state = wrwc) AND receivedEvent = "ARWC" and (bldg != Zero)

thenPart = [transID := 9, AddRoomsInC(), sendACapy(tempc), transID := 0,

receivedEvent := "", state := wrwc

(one selection per transition)

State

name.symbol = "END"

invariant = (state = "END")

Iteration

condition = (state != "END")

iterBody = [Selection!!, SelectionT2,...]

Subprogram

name.symbol = "transitions"

formals = []

locals = []

body = [thelteration]

Figure 41. Creating "transitions"

56

The operation added as a result of the transitions is represented in the following

equation:

Transformation Requirement 5: Vc:C|(3t:T|t6 c.trans) =>■ (3o : 0,i : I |

(3 s : state | (s.name = "END" A s G estates) =>■ {.condition — -> (s.invariant))

A (-> (3 s : state | (s.name = "END" A s G estates)) => {.condition = true)

A (Vi : T 11 G c.trans => (3 ss : SS,si : S,s2 : S |

sl.name = t.current A sl.name = t.next A (3 exp : expression \

ss.condition = exp A exp = (sl.condition A "receivedEvent" = t.event A t.guard))

A BopSeq -.[statement],stl :[statement]st2 :[statement] \ ss.thenPart = opSeq

A -i (t.action — null) => stl =[(sc : SC, ol : O |

ol £ cops A ol.name = t.action A sc.name — ol.name • sc)]

A (t.action = null) =$■ stl =//

A (3ee : EE | ee.LHS — "state" A ee = s2.invariant)

=> (3 as : AS | as.LHS = "state" A as.RHS = ee.RHS A sc2 =[as])

A (-1 (3ee : EE | ee.LHS = "state" A ee = s2.invariant)) =*> sc2 =[]

A ss.thenPart — ["transID" := t.number]^ sei ^ toSeq{scl : SC |

(Vstr : String \ str £ t.send => (3 e : E | e.name — str A e € c.events

A scl.name = str)) • scl} ^ ["transID":= 0, "receivedEvent":= ""7'-^ sc2

A ss e i.thenPart))

A o.body =[i]A o.name = "transitions" A o G cops)

4-3 Transformation Summary

This chapter provides graphical and mathematical descriptions of the transformations

required for full representation of the three dynamic model elements (state, event, and

transition) within class attributes and operations. The figures visually demonstrate the

interactions of various objects in the system required for the creation of elements which are

added to the appropriate class. Predicate calculus and a precisely defined symbology are

used to present the mathematical requirements for complete and information-preserving

transformations.

57

V. Demonstration

A sample system is specified and manipulated in this chapter through the transformations

discussed in Chapter IV. Each step taken is discussed and implemented to show that

the methodology outlined in previous chapters is feasible. A discussion of communication

protocols precedes the description of the specifications and code generated for the proof of

concept below.

5.1 Agent Communication Protocols

The systems used in this chapter include the Z-specified Room System in Appendix A

and three event-passing protocols: an interface to Java's standard input and output, the

Multi-Agent Relationships via Socket cHannels (MARSH) system, and agentMom [7].

Other protocols may be used for agent systems provided they can be conformed to the

specification requirements identified in this thesis. This example requires that the se-

lection of a communication protocol be made before incorporating agent attributes and

operations into the foundation classes. The procedures in this document dictate a specific

technique for the integration of information passing protocols via the "sendEvent" and

"receiveEvent" subprograms. Any communication protocol that can be integrated using

the methodology presented here can also be used in the generation of a software system.

5.2 Analysis Model

A room management system is used as the example system here. A room keeper

tracks rooms added by various room users: it adds rooms specified by users, finds rooms

for users meeting a user-specified capacity constraint, and provides the capacity of a user-

specified room. The room user is the other primary object in the system, providing a

person access to the information.

Because the means for parsing Z specifications into the AWSOME tree (implemented

in Java) do not yet exist, the specifications are instantiated via a hard-coded Java program

that explicitly builds the representative AWSOME AST. The creation of the AST could

be handled by a graphical input program with a parser providing suitable translations

58

between representations, by queries to a repository, or perhaps by other means; without

these tools at the author's disposal, hard-coding Java code is suitable. The template used

to create the Java-coded types and classes is provided in Appendix B and a sample of

the room keeper's dynamic model is provided below. The steps for creating the analysis

model include the initial specification of the system in Z, the execution of the system model

code (created to reflect the Z specification), and the setting of appropriate elements to the

associated children/parents in the AST.

A sample from the RoomKeeper's dynamic model specification in Z provides a start-

ing point for the transformation process.

. Waiting
RoomKeeper

state = Waiting

, ARoomWithCapy
rwc : RoomWithCapy

True

Current Event Guard Next Action Send

Waiting ARoomWithCapy Waiting MakeRoom

The Zspecification must be captured within the AWSOME structure. This is accomplished

in this chapter by hard-coding the model as presented in the Java code segment below.

Presented is the same portion of the RoomKeeper as is specified above.

59

public static void addRoomKeeper(WsPackage pgm) {
WsClass RoomKeeper = new WsClassO;
{//create the dynamic model

{//create the states
RoomKeeper.addState(new WsState("Waiting", "state = waiting",

"Waiting for an input from an external source."));
}
{//create the events

tempevent = new WsEvent("ARoomWithCapy");
tempevent.setDescriptionC'RoomWithCapy sent to or received "+

"from a user.");
tempevent.setWsEventParameters(new Vector());
tempevent.addWsEventParameter(

new WsParameterO'rwc", RoomWithCapy));
RoomKeeper.addEvent(tempevent);

>
//create the transitions
{//Tl

temptrans = new WsTransitionO;
//set current state
temptrans.setWsCurrentState("Waiting");
//set receive event
temptrans.setWsReceiveEvent("ARoomWithCapy");
//set next state
temptrans.setWsNextState("Waiting");
//set the action
temptrans.setWsAction("MakeRoom");
RoomKeeper.addTransition(temptrans);

}
>
pgm.addWsDecl(RoomKeeper);

To enter the entire model a "main" program first calls methods for class and data

type creation, performs pointer-setting responsibilities, and then calls the methods for com-

pleting transformations. The models are not stored beyond the execution of the method,

but are output as simple text to the screen via the "outlineVisitor" s in the last two lines

of code. The code used for these activities follows.

60

public static void main(java.lang.String[] args)
{ roomAnalysis = new WsPackageO;

roomDesign = new WsPackageO;

roomAnalysis.setWsArtName(new Wsldentifier("RoomAnalysis"));
addTypes(roomAnalysis);
addRoom(roomAnalysis);
addRoomWithCapy(roomAnalysis);
addRoomKeeper(roomAnalysis);
addRoomUser(roomAnalysis);

roomDesign =
(WsPackage)roomAnalysis.acceptVisitor(new WsCopyVisitorO, null);

roomDesign.setWsArtName(new Wsldentifier("RoomDesign"));
//set transition pointers over all child packages
for (Enumeration e = roomDesign.getWsPackagesO.elements();

e.hasMoreElementsO ;)

■c
WsPackage p = (WsPackage) e.nextElementO;
for (Enumeration ds = p.getWsDeclsO.elements();

e.hasMoreElements();)

{
WsDeclaration thisd = (WsDeclaration) ds.nextElement();
if (thisd instanceof WsClass)

((WsClass) thisd).setTransitionPointersO;

>
}
//set transition pointers for all classes
for (Enumeration e = roomDesign.getWsDeclsO.elementsO;

e.hasMoreElement s();)

{
WsDeclaration d = (WsDeclaration) e.nextElementO;
if (d instanceof WsClass)

((WsClass) d).setTransitionPointersO;

}
Transformations.addAttributesFromEvents(roomDesign);
Transformations.addReceiveEventProcedures(roomDesign);
Transformations.addSendEventProcedures(roomDesign);
Transformations.addTransitions(roomDesign);
roomAnalysis.acceptVisitor(new WsOutlineVisitorO, null);
roomDesign.acceptVisitor(new WsOutlineVisitorO, null);

The "OutlineVisitor" s present a simple text representation of the specification. The

following shows how the analysis model is represented within the AWSOME AST, reflecting

the same specification portions as identified above.

61

wsDecls:Class
wsDeclName :Identifier (RoomKeeper)
wsDynamicModel :Dynamic Model

wsClassStates:State
wsDeclName:Identifier (Waiting)
wsStatelnvariant:(state = waiting)

wsTransitions:Transition
wsCurrentState:Identifier Reference (Waiting)
wsReceiveEvent:Identifier Reference (ARoomWithCapy)
wsAction:Subprogram Call

wsSubprogCallName :Identifier Reference (MakeRoom)
wsNextState:Identifier Reference (Waiting)

wsClassEvents:Event
wsDeclName:Identifier (ARoomWithCapy)
wsEventParameter:Parameter

wsParameterName :Identifier (rwc)
wsParameterType :Identifier Reference (RoomWithCapy)

5.3 Transformation Process

Transformations can be performed in any order, although they are ordered here ac-

cording to presentation in Chapter IV. These transformations are implemented according

to the algorithms outlined in the following sections and are in compliance with the trans-

formation requirements specified in Chapter IV.

1. Add the necessary attributes to classes with dynamic models, meeting Transforma-

tion Requirements 1 and 2.

2. Add the operations corresponding to received events, meeting Transformation Re-

quirement 3.

3. Add the operations corresponding to send events, prompting for the subprogram call

names as required, meeting Transformation Requirement 4.

4. Add the operation "transitions," meeting Transformation Requirement 5.

5. Output the resulting model with a text string representation.

5.3.1 Creating Necessary Attributes. The algorithm for creating attributes in-

tended for the temporary storage of event parameters is quite simple, requiring only a few

steps.

62

Enumerate over all class types in the package (including sub-packages)
and the class' events
- Enumerate over the event parameters

- Create an attribute corresponding to the event parameter
- Name the attribute "tempEventParamName"
- Add the attribute to the class

- If transitions exist in the class
- Create an attribute

- Name the attribute "receivedEvent"
- Set the data type to "String"
- Add the attribute to the class

- Create an attribute
- Name the attribute "transID"
- Set the data type to "Natural"
- Add the attribute to the class

5.3.2 Creating Received Event Operations. Received event operation creation is

much more complex than attribute generation, taking into account not only event infor-

mation but also the state definitions associated through transitions.

- Enumerate over all class types in the package (including sub-packages)
and the events in class transitions' received events
- Create a procedure

- Set the name of the procedure: "receiveEventName"
- Create a selection statement

- Enumerate over all current states in transitions that permit
the event to be received
- Create a disjunction of these states' invariants

- Create an expression
- Conjunct the disjunction from above with the event's constraint

- Set the selection's condition to the resultant expression
- Create an assignment statement

- Left hand side = "receivedEvent"
- Right hand side = <TheEventName>

- Add the statement to the Selection's thenPart
- Enumerate over the event parameters

- Create an assignment statement
- Left hand side = "temp<TheParameterName>"
- Right hand side = <TheParameterName>

- Append the statement to the Selection's thenPart
- Set the body of the procedure as the selection

- Add the procedure to the class' operations as a method

5.3.3 Creating Send Event Operations. Send event operations also require in-

formation from the other dynamic model components as well as inputs from the designer.

Each event that can be sent in any given transition requires a subprogram call name that

63

must be provided from a source external to the automated process such as, in the case of

this example, through standard 10.

- Enumerate over all class types in the package (including sub-packages)
and the events in class transitions' send events
- Create a procedure

- Set the name of the procedure: "sendEventName"
- Initialize local integer variable TheTransitionID and set to 1
- Enumerate over all transitions with the event in the send field

- Create a selection statement
- Set the condition of the selection to the equality:
transID = TheTransitionID

- Create a subprogram call
- Request the name of the appropriate subprogramCall from

the designer
- Set the subprogram name as specified
- Add an argument for each parameter in the event

- Set the thenPart of the selection to the subprogram call
- Add the selection to the procedure's body
- Increment TheTransitionID by 1

- Add the procedure to the class

5.3.4 Creating "transitions" Operation. The "transitions" operation is created

directly from the list of transitions, using the properties of the events and states in the

associated class. The transformations defined here yield a correct design specification;

nevertheless the elimination of independent automatic transition handling would likely

yield a more efficient system, an intended step left for future study and implementation.

- Enumerate over all class types in the package (including sub-packages)
- Create a subprogram (procedure)
- Initialize local integer variable TheTransitionID and set to 1
- Name the subprogram "transitions"
- Create an iteration
- Set the condition to the negation of the END state invariant or "True"

if END does not exist
- Enumerate over the transitions (increment TransitionID for each

transition handled)
- Create a selection statement
- Set the condition to the conjunction of the <Current> invariant,

receivedEvent = <EventName>, and <Guard>
- Add the assignment transID := TheTransitionID to the selection's

thenPart
- Add a procedure call for the transition's <Action> to the selection's

thenPart (if applicable)
- Add procedure calls for the transition's <Send> events to the

selection's thenPart (if applicable)

64

- Add the assignment receivedEvertt := "" to the selection's thenPart
- Add the assignment transID := 0 to the selection's thenPart
- Add the selection statement to the body of the iteration
- Increment TheTransitionID by 1
Add the subprogram (as a method) to the class

5.4 Resultant Design Model

After the transformations are executed on the analysis specification, including the

entry of appropriate subprogram call names by the designer, the system outputs the design

model. The class elements added to the RoomKeeper that directly result from the above

specification are presented below first in the outline view as represented in the AWSOME

tree and then by the Java code generated automatically by a code generation tool which

has been accomplished in cooperation with Ashby [1]. Because the AWSOME design model

maps directly to code the designer can hard-code any portions that are not handled by the

code generator.

wsDecls:Class
wsDeclName :Identifier (RoomKeeper)

wsPrivate :(true)
wsAttributeDataObject:Variable

wsDeclName:Identifier (temprwc)
wsDataObjectType:Identifier Reference (RoomWithCapy)

wsAttributeHomeClass:Identifier Reference (RoomKeeper)
wsClassDataComponent :Attribute

wsAttributeDataObject:Variable
wsDeclName:Identifier (transID)
wsDataObjectType:Identifier Reference (Natural)

wsAttributeHomeClass:Identifier Reference (RoomKeeper)
wsClassDataComponent :Attribute

wsAttributeDataObject:Variable
wsDeclName:Identifier (receivedEvent)

. wsDataObjectTypeidentifier Reference (STRING)
wsAttributeHomeClass:Identifier Reference (RoomKeeper)

wsClassOperation :Method
wsMethodSubprogram :Procedure

wsDeclName:Identifier (transitions)
wsSubprogBody:Iteration

wsIterCondition :(True)
wsIterBody :Selection

wsIterBody :if
. (wsBinExpOpl :(True)

AND :
(wsBinExpOpl identifier Reference (receivedEvent)

65

 wsBinExp0p2 :(ARoomWithCapy)))
then :Assignment
 wsAssignLHS:Identifier Reference (transID)

 wsAssignRHS:Literal Integer (2)
then :Procedure Call
 wsProcCallSupprogCall :Subprogram Call
 wsSubprogCallName :Identifier Reference (MakeRoom)

then :Assignment
 wsAssignLHS:Identifier Reference (transID)

 wsAssignRHS:Literal Integer (0)
wsClassOperation :Method

wsMethodSubprogram :Procedure
wsDeclName:Identifier (receiveARoomWithCapy)
wsSubprogFormal:Parameter

wsParameterName :Identifier (rwc)
wsParameterType :Identifier Reference (RoomWithCapy)

wsSubprogBody:Selection
wsSubprogBody:if
if:(state = waiting)
then :Assignment

wsAssignLHS:Identifier Reference (receivedEvent)

wsAssignRHS:Identifier Reference (ARoomWithCapy)
then :Assignment

wsAssignLHSidentifier Reference (temprwc)

wsAssignRHS:Identifier Reference (rwc)
wsClassOperation :Method

wsMethodSubprogram :Procedure
wsDeclName:Identifier (sendARoomWithCapy)
wsSubprogBody:Selection

wsSubprogBody:if
(wsBinExpOpl :Identifier Reference (transID)

 wsBinExp0p2 :Literal Integer (4))
then :Procedure Call

wsProcCallSupprogCall Subprogram Call
 wsSubprogCallName :Identifier Reference (MARSHSystemSend)
 wsSubprogCallArg :Identifier Reference (temprwc)

public RoomKeeperO -[
temprwc = null;
transID = 0;
receivedEvent = "";

>

public void transitions() {
while (true) ■[

66

if (state == start) {
transID = 1;
transID = 0;
receivedEvent = "";
state = waiting;

}

if (state == waiting && receivedEvent.equals("ARoomWithCapy")) {

transID = 2;
MakeRoomO ;
transID = 0;
receivedEvent = "";
state = waiting;

>
if (state == waiting & receivedEvent.equals("ARoom") & true) {

transID = 3;
GetCapyO ;
sendARoomWithCapyO ;
transID = 0;
receivedEvent = "";
state = waiting;

}
if (state == waiting & receivedEvent.equals("ACapy") & true) {

transID = 4;
FindRoomO;
sendARoomWithCapyO ;
transID = 0;
receivedEvent = "";
state = waiting;

public void receiveARoomWithCapy(RoomWithCapy rwc) {
if (state == waiting) {

receivedEvent = "ARoomWithCapy";
temprwc = rwc;

}
}

public void sendARoomWithCapyO {.
if (transID == 3) {

socketSystemSend.send(temprwc);

}
if (transID == 4) {

socketSystemSend.send(temprwc);

}
>

67

5.5 System Implementation

Because domain integration is not addressed within the design generation above,

it is necessary to hard-code additions to or copy existing code segments into the design

specification from other domains as desired. For the Java standard input and output

segments, the "standardIO" class and methods are added from Appendix E.

Two different Java socket systems are used to separately demonstrate the use of

the system generated above. The MARSH system is a simple Java socket-based protocol

requiring the addition of several class attributes (such as "myName" and "destPort") but

no further system specification; the available code is used directly by the RoomKeeper and

RoomUser for communications via subprograms generated by events. The code for the

RoomKeeper, RoomUser, and MARSH system are included in Appendix C. The MARSH

system adds a "listen" er to objects for receiving events from other objects, and hard-codes

10 to/from the user for appropriate interfacing with the "send" and "receive" events. The

classes specific to the MARSH system protocol are in Appendix D and the classes used

for 10 to/from the user are provided in Appendix E. The 10 interaction demonstrates

the potential for implementing mixed-initiative programs as presented by Hartrum and

DeLoach [17] within AWSOME.

The agentMom protocol requires the RoomKeeper and RoomUser extend the Agent

class by the superclass relationship; conversations must be defined and implemented as

outlined by DeLoach [7]. Because conversations can be viewed as moving from state to state

parallel to the object/agent's state changes, a boolean variable is added to the appropriate

class and used by the conversation as a signal that the next step in the conversation should

or should not be taken. The RoomKeeper, RoomUser, and additional classes needed

specifically for the agentMom implementation are provided in Appendix F.

"Send" procedures (such as the "socketSystemSend" referenced in the "sendARoom-

WithCapy" method above) are created to handle the send event requirements. The "lis-

tener" and "Send"s provide the interface between code generated from the design specifi-

cation and the communication packages.

68

Within both systems outlined here constructors are added to provide the means of

instantiating the objects and setting initial values as required. Other Java-specific methods

such as the "run" method are created to begin the execution of the object's "transitions"

method, and to initiate the "listener's required by the related protocol.

5.6 Summary

This chapter provides a walk through an example beginning with the analysis speci-

fication and ending with an executable system. Transformations perform automated addi-

tions to the analysis model and integrate designer inputs to develop a design specification

that can be ported to code. While segments of code must be implemented by the designer

directly, the transformations of the dynamic model provide attributes and operations that

can be directly correlated with executable code constructs.

69

VI. Conclusion, Contributions, and Recommendations

This thesis began with the focus on developing a complete specification-to-code method-

ology for an entire agent system. As the research progressed it became clear that code

generation would likely be too grand an objective to be reasonably achieved in the short

months allowed, and the focus shifted toward the insertion of agency into a generic object

model. The goal shifted to consider how to generalize models for the first steps of trans-

formation and then to integrate more complex, existing components into the model while

maintaining the original intention of the analysis specification.

6.1 Contributions

Ongoing research at AFIT is focused on the development of the methodology and

implementation of an automated synthesis tool. Previous work laid out the structure for

capturing Z&nd 00 models within meaningful ASTs and provided for the manipulations of

certain portions of those ASTs. This research presents an aspect not previously addressed,

specifically targeting the 00 dynamic model, the semantics that are implied by its various

elements, and its integration with communication protocols that agent systems commonly

employ. The dynamic model is transformed into procedures similar to the 00 functional

model using designer preferences to create a system consistent with the initial specifica-

tions. Flexibility is provided not only for the implementation of mixed-initiative programs

but also for the design of agent systems. An agent system can be generated from generic

object specifications provided that an agent communication protocol is well-defined, the

components for the agent system are specified appropriately, and existing agent system

elements are in place and correctly coded.

Implementation of the methodology presented here is demonstrated by applying the

automated transformations developed to basic object specifications. Automated transfor-

mations integrate designer specifications of "send" method names and create a complete

design specification. After code generation the designer must provide only the interface

for the particular communication protocol selected.

70

The transformations progress automatically with the identification of the "sending"

procedures required from the designer and an automatic code generator creates Java code

from the resultant design specification. While the designer must integrate additional do-

main information (such as agent components and communication protocols) by creating a

"listener" method to handle incoming events and the "send" methods identified during the

transformations, these components are designed to interface the automatically generated

methods with the communication protocols desired for the system. Additional attributes

may be added to the class to accommodate requirements of the desired protocols. The

designer creates constructors to incorporate the "init" method (if included in the analysis

specification) and to set other initial class attribute values as necessary. Finally, a "main"

method (or "run" or other appropriate method) is added to enable the execution of the

code.

Five transformations are identified for the complete representation of the dynamic

model within class attributes and operations. Each is defined mathematically to provide

the formal basis required for implementation on any capable platform. These five equations

capture the most significant portions of this work, giving the formal foundation necessary

for true correctness-preserving transformations.

6.2 Recommendations for Further Research

The methodology for system analysis currently requires an in-depth understanding of

the formal Z specification language. Complicated formulae tend to be the rule for any prac-

tical system, causing many to pursue other less rigorous means for system development.

Previous doctoral and master's work, along with this research, provide a well-defined se-

mantic framework for the entire object model that now can be harnessed within a graphical

based system most system designers and analysts will be more apt to use.

Integration of existing domains requires significant additional research. Dealing with

naming restrictions and allowable domain integrations is not a trivial problem. The devel-

opment of this area is key to a more fully automatable synthesis system.

71

The opportunity for optimization abounds within the "transitions" subprogram. This

research treats automatic transitions exactly the same as non-automatic transitions gener-

ating the potential for much slower system execution due to unnecessary code execution.

Merging the statements resulting from automatic transition transformations into the state-

ments from non-automatic transition transformations could yield significant improvements

in the execution time of the final product.

6.3 Conclusions

A great variety of agent systems exist within many different modeling schemes; com-

munication protocols abound in equal variety. This research addresses agency from the

standpoint that an agent system is composed of objects exhibiting some level of proac-

tive behavior and communicating with a structured communication language. The proac-

tiveness aspect is assumed either to be implemented within the analysis specification or

integrated via the message passing model as send and receive events.

The task of separating unique characteristics of one agent communication system

from another is daunting at best. An agent system can be designed for use with agent-

Mom, using conversations defined in a specific manner and integrating much of the design

at the analysis level. It is possible to convert generic objects into objects using agentMom

communications for interaction by asserting the appropriate design decisions during AW-

SOME transformations. The MARSH system can be similarly harnessed for inter-object

information passing, and interfacing with the human user is a straightforward process.

However, there are major pieces of code (object constructors, initialization method(s), and

methods for interfacing the generated code with the chosen communication protocol) that

must be written aside from that potentially generated by AWSOME.

The process of generating useful executable code from requirements specifications is

one step closer to a reality as the result of this research. Combining the work here with

that of other researchers past, present, and future, provides an ever-increasing knowledge

base from which this thesis' opening example will become a reality.

72

Appendix A. Generic Room System Specification in Z

This appendix provides a room system comprised of a single room keeper and a number

of room users. Two types of rooms are represented, one with only a building and room

number specified and another with the added capacity attribute. The room keeper keeps

track of rooms added by all users, and responds to requests for the capacity of a given

room and for the rooms with a capacity greater than or equal to the input value.

In response to the request for rooms of a given capacity (or greater), the room keeper

returns a single room, but keeps track of all the rooms sent so that with repeated requests

the keeper eventually returns all rooms meeting the criteria, returning "Zero" values when

no more rooms qualify. When performing the corresponding request, the room user repeats

the request until a "Zero" response is received. This sequence of events assumes the same

user maintains exclusive access to the keeper during this sequence of activity.

73

A.l Room
Room Structure Definition

Z Static Schema:

| STRING :seqCHAR

, Room
bldg : STRING
num : STRING

True

.Room
ARoom

True

A.2 RoomWithCapy

Z Static Schema:

. RoomWithCapy.
capacity : A/-

Room

RoomWithCapy Structure Definition

True

! RoomWithCapy.
ARoom

True

74

A.3 RoomKeeper
RoomKeeper Structure Definition

Z Static Schema:

[Room, RoomWithCapy, STRING]

Keeper—States ::= start | waiting

| RoomWithCapySetType : seq RoomWithCapy

 RoomKeeper
roomSet: RoomWithCapy SetType
sentRoomSet: RoomWithCapy SetType
size : JV"
state : Keeper-States

size — jfcroomSet

. InitRoomKeeper.
ARoomKeeper

roomSet' = {J.}
sentRoomSet? — {_L}
size' = 0
state' — start

RoomKeeper Functional Model

Process Name: MakeRoom

-MakeRoom-
ARoomKeeper
rwc? : RoomWithCapy

rwc? 6 roomSet'

75

Process Name: GetCapy

. GetCapy
ARoomKeeper
rwcl : RoomWithCapy
r? : Room

(3 rm : RoomWithCapy •
(rm € roomSet A ((rm.bldg = rl.bldg A rm.num = rl.num) A rwcl — rm)))
V (! 3 rm : RoomWithCapy •
(rm £ roomSet A ((rm.bldg = rl.bldg A rm.num — rl.num)
A (rwcl.bldg = Zero A rwcl.num = Zero))))

Process Name: FindRoom

.FindRoom.
ARoomKeeper
rwcl : RoomWithCapy
c?:Af

(3r : RoomWithCapy • (r € roomSet A ((r.bldg — rwcl.bldg A r.num = riticl.num)
A r.capacity >= c?)) A ((ru/c! ^ sentRoomSet) A (noc! 6 sentRoomSet'))
V (!(3r : RoomWithCapy • (r.capacity — c? A r ^ sentRoomSet))
A ((rwcl.bldg = Zero A rwcl.num — Zero)) A sentRoomSet' = {-L}))

RoomKeeper Dynamic Model

State Name: START

.START.
RoomKeeper

state = start

State Name: Waiting

 Waiting
RoomKeeper

state — Waiting

Event Name: ARoomWithCapy

. ARoomWithCapy
rwc : RoomWithCapy

True

76

Event Name: ARoom

, ARoom
r : Room

True

Event Name: ACapy

. ACapy.
c-.Af

True

State Transition Table:
Current Event Guard Next Action Send
START Waiting InitRoomKeeper
Waiting
Waiting
Waiting

ARoomWithCapy
ARoom
ACapy

Waiting
Waiting
Waiting

MakeRoom
GetCapy
FindRoom

ARoomWithCapy
ARoomWithCapy

77

A.4 RoomUser
RoomUser Structure Definition

[Room, RoomWithCapy, RoomWithCapySetType, STRING]

UserStates ::= start \ menu \ getcapy \ getroom \ getroomwc \ waitcapy
| waitroomwc \ premenu \ end

Menu—Choice ::= add \ capy \ room \ quit

. RoomUser
roomsInConstraint: RoomWithCapySetType
theCapy : Af
state : UserStates

. InitRoomUser.
ARoomUser

state' — start
theCapy' — 0
roomsInConstraint' = {_!_}

RoomUser Functional Model

Process Name: AddRoomsInConstraint

. AddRoomsInConstraint.
ARoomUser
rwc? : RoomWithCapy

rwc g roomsInConstraint'
c! := theCapy

Process Name: ClearRoomsInConstraint

, ClearRoomsInConstraint.
ARoomUser

roomsInConstraint' = {J.}

78

Process Name: XferRoom

.Xj er Room.
ERoomUser
r? : Room
r\ : Room

r! = r?

Process Name: XferRWC

.XferRWC.
ERoomUser
rwcl : RoomWithCapy
rwcl : RoomWithCapy

rwcl = rwc!

Process Name: SaveXferCapy

. SaveXferCapy
ARoomUser

d-.Af

theCapy' — c?

Process Name: OutputRIC

. OutputRIC
ERoomUser
ricsetl : RoomWithCapySetType

ricsetl = roomsInConstraint
roomsInC onstraint' =

RoomUser Dynamic Model

State Name: START

_ ST'ART.
RoomUser

state = start

79

State Name: END

.START,
RoomUser

state = end

State Name: TopMenu

. TopMenu
RoomUser

state = menu

State Name: GettingRoomWC

. GettingRoomWC.
RoomUser

state = getroomwc

State Name: GettingCapy

.GettingCapy.
RoomUser

state = getcapy

State Name: GettingRoom

. GettingRoom.
RoomUser

state = getroom

State Name: WaitingRoomWC

. WaitingRoomWC _
RoomUser

state = waitroomwc

State Name: WaitingCapy

! WaitingCapy.
RoomUser

state = waitcapy

80

State Name: Premenu

. Premenu_
RoomUser

state = premenu

Event Name: ShowMenu

ShowMenu

true

Event Name: MenuChoice

, MenuChoice.
choice : MENU-CHOICE

true

Event Name: RoomWithCapyPrompt

RoomWithCapy Prompt

true

Event Name: CapyPrompt

Capy Prompt

true

Event Name: RoomPrompt

RoomPrompt

true

Event Name: ARoomWithCapy

. ARoomWithCapy
rwc : RoomWithCapy

true

81

Event Neune: ACapy

-ACapy.

true

Event Name: ARoom

-ARoom.
r : Room

true

Event Name: ShowRoomsInConstramt

, ShowRoomsInConstraint.
ricset: RoomWithCapySetType

true

82

4J
-*J a a
a '3

FH

o 4^
FH

EH

>> a >>
o

IS

CO +3
u « a Ü

ft ° ft & 5 ft co X ft
a
o

-=> a a
•-go M a

o 1 a
o

FH

OH ^£ 3 OH >> a o a FH

a
tu

a
a a >, a

O ft o
O 03 O

S 3 9 a
ft
ct)

Ü

o
o

Pi
ft te o

o
Pi

3 a
CU

CO S Pi O Pi < § < << < CO < S

+J
-1J

a
CO '3 FH

FH 4J
4-3 cn
CO a a o
o o

>s Ü Ö

Ü

ft
cS
u a

a
to Ü

31
o a

o

a
.2 1 o

o
Pi 1 o

Pi
FH

t_> n3

FH T3 4J
-o a

(H

«a
IS
tu

<C X CO X <! O X Ü

O Ü ü
£ £ £
a >, a a >> a
O ft o o ft o
O (S o o e8 o

3 Pi O Pi a Pi O Pi a a a
a Ml M Ml a bO bD M a a a

•H

0

§

G
et

ti
nj

G

et
ti

ni

G
et

ti
nj

E

N
D

 tu _a .a a tu
'•3 §

tu tu

tu
2 (3 1 1 > On

tu
FH

OH

ft
E3

o o
s. s.

"a a, o •«
to <u

^3 5" o 3
ö u s- o> Ik II
II II II II 531 531

"53 "53 -o U U <D SJ

3
U

U U U U -o «o
•« -es -ea •«
O O O O

-c JS -e rfi 3 3
u u u u S. f-

>-> >, >> >>
o. ft ft ft
tö cS to CO u ü Ü o

CD CD CD CD X X X X

3
O O O O

'o 'o 'o "o
X X X X

-M

£
4J 4J

$ ü Ü o u a >, a a a a H 4-3 a a a a o a o o o o
a a a a o CS o o o o

a 0} > (U tl) D <D Pi Ü Pi Pi Pi Pi
0 W § s s § < <! < < < <!

"to
Ö Ü O Ü

0 1-5 ££
a >> a a a >>

0)

13
o ft o o o ft

3 3 3 2
o

Pi
cS o

Pi
o o

Pi Pi V a
CO ■a

tu

<

a a a a
tu tu tu a; bo

_a
bo
.a

bO

.a ti
n

g

ti
n

g

bO

.3
*4J

a
tu

FH ft ft ft o< 4J +a +3 "cd cd 'S CD 3 E-"
CO £E3ESES O

CD
Ü o II l FH

83

Appendix B. Template for Creating Java Representations of AWSOME Types

This template can be used to create AWSOME representations of types and objects. A

sample from the code used for creating the RoomUser is provided here, along with STRING

type creation. The input Package pgm is named "Room System" elsewhere and contains

definitions for the other types and classes required in the system.

public static void addRoomClient(WsPackage pgm)
{

WsSubprogram tempsubp;
WsState tempstate;
WsEvent tempevent;
WsTransition temptrans;
WsParameter tempparam;

//Type String
STRING = new WsSequenceTypeO;
STRING.setNameO'STRING");
STRING.setElementTypeName("Character");
pgm.addWsDecl(STRING);

//Class RoomMgr
WsClass RoomClient = new WsClassO;
RoomClient.setName("RoomClient");
// RoomClient.setSuperclass(); //not used
RoomClient.setWsInvariant("True");
RoomClient.addWsClassDataComponent(

new WsAttribute("Variable","roomsInConstraint",
"RoomWithCapySetType"));

//create the functional model
{//create AddRWC

tempsubp = new WsProcedureO ;
tempsubp.setName("AddRWC");
{//create formal parameter

tempparam = new WsParameter();

tempparam.setWsParameterNameC'rwc?");
tempparam.setWsParameterType("RoomWithCapy");
tempparam.setWsParameterln(true);
tempsubp.addWsSubprogFormal(tempparam);

}
tempsubp.setWsPostConditions("rwc? IN rwcset'");
RoomClient.addWsClassOperation(new WsMethod(tempsubp));

//create the dynamic model

{//create a state, arguments include the state name and the state

84

//invariant
RoomClient.addState(new WsState("Init", "state = initial"));

{//create an event
tempevent = new WsEventC'AMenuChoice");

tempevent.addWsEventParameter(
new WsParameterO'menuchoice", "MENU.CHOICE"));

RoomClient.addEvent(tempevent);

}

//create a transition

{
temptrans = new WsTransitionO;
//set current state
temptrans.setWsCurrentState(new WsldentifierRef("WaitingRoomWC"));

//set receive event
temptrans.setWsReceiveEvent(new WsldentifierRef("ARoomWithCapy"));
//set guard condition
temptrans.setWsGuardC'rwc.bldg != ZERO");
//set next state
temptrans.setWsNextState(new WsldentifierRef("WaitingRoomWC"));
//set the action
temptrans.setWsAction(new WsSubprogramCall("AddRWC"));
//create the send event(s)
temptrans.addWsSendEvent(new WsSubprogramCall("ACapy"));
RoomClient.addTransition(temptrans);

}
pgm.addWsDecl(RoomClient);

85

Appendix C. Room System Implementation with MARSH System Communications

The Java code below provides the Room System discussed in this thesis, as implemented
for use with the MARSH system inter-object communication protocol.

public interface Keeper_States {
public final int start = 21;
public final int waiting = 22;

>

public interface User_States {
public final int start = 1;
public final int menus = 2;
public final int getcapy = 3;
public final int getroom = 4;
public final int getroomwc = 5;
public final int waitcapy = 6;
public final int waitroomwc = 7;
public final int premenu = 8;
public final int end = 9;

public interface Menu_Choice {
public final int add = 41;
public final int capy = 42
public final int room = 43
public final int quit = 44

/**

* The data type for containing a set of RoomWithCapy objects

*/
import java.util.*;
public class RoomWithCapySetType ■[

protected Vector items;

public RoomWithCapySetType() {
super () ;
items = new VectorO;

}

public void addElement (RoomWithCapy rwc) -[
if (!this.contains(rwc))

items.addElement(rwc);

}

public boolean contains(Object o) {
if (o instanceof RoomWithCapy)

for (Enumeration e = items.elements(); e.hasMoreElementsO;)
if (((RoomWithCapy) e.nextElementO) .equals((RoomWithCapy) o))

return true;

86

return false;

>

public RoomWithCapy elementAt(int i) {
return (RoomWithCapy) items.elementAt(i);

}

public Enumeration elements() {
return it ems.element s();

}

public Vector getElementsO {
return items;

>

public void setElements(Vector e) {
items = e;

}

public int sizeQ {
return items.size();

}

public String toStringO {
String s = "";
for (Enumeration enum = this.items.elements(); enum.hasMoreElementsO;)

s = s+"\n "+enum.nextElement();
return s;

>
>

**

* The RoomUser

*/
import j ava.io.*;
import java.util.*;
import java.net.*;
import Support.*;
public class RoomUser implements User_States, Menu_Choice, Runnable {

protected RoomWithCapySetType roomsInConstraint;
protected int theCapy;
protected int state;

protected int tempchoice;
protected RoomWithCapy temprwc;
protected int tempc;
protected Room tempr;
protected RoomWithCapySetType tempricset;
protected int transID;
protected String receivedEvent;

87

protected StdIO stdioSystemSend;
protected MARSHSystemSend socketSystemSend;
protected MARSHSystemReceive socketSystemRcv;

public RoomUserO {
super ();

this.initRoomUser();
this.receivedEvent = "";
this.tempc = 0;
this.tempr = null;

this.temprwc = null;
this.tempchoice = 0;

public void AddRoomsInConstraintO {
RoomWithCapy rwc = temprwc;
if (!roomsInConstraint.contains(rwc))

roomsInConstraint.addElement(rwc);
tempc = theCapy;

>

public void ClearRoomsInConstraintO {
roomsInConstraint = new RoomWithCapySetTypeO;

}

public int getStateO {
return state;

}

public int getTransIDO {
return transID;

}

public void initRoomUser() {
state = start;
theCapy = 0;
roomsInConstraint = new RoomWithCapySetTypeO;

>

public static void main(String[] args) {
Roomllser RU = new RoomUserO;
String myname = "rul";
String myhost = "localhost";
int myport = (3400);
String targetname = "RoomKeeper";
String targethost = "localhost";
int targetport = 3000;

RU.socketSystemRcv = new MARSHSystemReceive(myname, myhost, myport,
targetname, targethost, targetport, RU);

RU.socketSystemRcv.start();

88

RU.socketSystemSend = new MARSHSystemSend(myname, myhost, myport,
targetname, targethost, targetport, RU) ;

>
RU.stdioSystemSend = new StdlO(RU);
RU.transitions();

>

public void OutputRICO {
tempricset = roomsInConstraint;
roomsInConstraint = new RoomWithCapySetTypeO;

}

public void receiveACapy(int c) {
if (state == getcapy) {

receivedEvent = "ACapy";
tempc = c;

}
}

public void receiveAMenuChoice(int choice) {
if (state == menus) •[

receivedEvent = "AMenuChoice";
tempchoice = choice;

>
}

public void receiveARoom(Room r) {
if (state == getroom) -[

receivedEvent = "ARoom";
tempr = r;

>
}

public void receiveARoomWithCapy(RoomWithCapy rwc) {
if (state == getroomwc || state == waitroomwc || state == waitroomwc

I| state == waitcapy) {
receivedEvent = "ARoomWithCapy";
temprwc = rwc;

}
}

public void run() -Q

public void SaveXferCapyO {
theCapy = tempc;
tempc = theCapy;

>

public void sendACapyO {
if (transID == 7) {

socketSystemSend.send(tempc);

89

>
if (transID == 9) {

socketSystemSend.send(tempc);

}
}

public void sendARoomO {
if (transID == 8) {

socketSystemSend.send(tempr);

}
}

public void sendARoomWithCapyO {
if (transID == 6) {

socketSystemSend.send(temprwc);

}
if (transID == 11) {

stdioSystemSend.showRoomWithCapy(temprwc);

}

public void sendCapyPromptO {
if (transID == 3) {

stdioSystemSend.capyPrompt();

}
}

public void sendMenuPromptO {
if (transID == 1) {

stdioSystemSend.menuPromptO;

}
if (transID == 6) {

stdioSystemSend.menuPromptO;

}
if (transID == 12) {

stdioSystemSend.menuPrompt();

}
if (transID == 13) {

stdioSystemSend.menuPromptO;

}

public void sendRoomPromptO {.
if (transID == 4) {

stdioSystemSend.roomPrompt();

}

public void sendRoomWithCapyPromptO ■{
if (transID == 2) {

90

stdioSystemSend.roomWithCapyPrompt();

>
>

public void sendShowRoomsInConstraintO {
if (transID == 10) {

stdioSystemSend.showRICSet(tempricset);
}

}

public synchronized void setReceivedEvent(String s) {

if (receivedEvent.equals(""))
receivedEvent = s;

}

public void transitions O ■[
while (state != end) {

if (state == start) {.
transID = 1;
sendMenuPromptO ;
transID = 0;
receivedEvent = "";
state = menus;

}
if (state == menus kk receivedEvent.equals("AMenuChoice") kk

tempchoice == add) {.
transID = 2;
sendRoomWithCapyPrompt();
transID = 0;
receivedEvent = "";
state = getroomwc;

}
if (state == menus && receivedEvent.equals("AMenuChoice") kk

tempchoice == capy) {
transID = 3;
sendCapyPromptO ;
transID = 0;
receivedEvent = "" ;
state = getcapy;

>
if (state == menus && receivedEvent.equalsC'AMenuChoice") kk

tempchoice == room) {
transID = 4;
sendRoomPromptO ;
transID = 0;
receivedEvent = "";
state = getroom;

>
if (state == menus kk receivedEvent.equals("AMenuChoice") &&

tempchoice == quit) {
transID = 5;

91

transID = 0;
receivedEvent = "";
state = end;

>
if (state == getroomwc kk receivedEvent.equals("ARoomWithCapy")) {

transID = 6;
XferRWCO;
sendARoomWithCapyO;
sendMenuPromptO ;
transID = 0;
receivedEvent = "" ;
state = menus;

}
if (state == getcapy kk receivedEvent.equals("ACapy")) {

transID = 7;
SaveXf erCapyO ;
sendACapyO ;
transID = 0;
receivedEvent = "";
state = waitroomwc;

}
if (state == getroom kk receivedEvent.equals("ARoom")) {

transID = 8;
Xf erRoomO ;
sendARoomO ;
transID = 0;
receivedEvent = "";
state = waitcapy;

}
if (state == waitroomwc && receivedEvent.equals("ARoomWithCapy") kk

Itemprwc.getBldgO.equals("Zero")) {
transID = 9;
AddRoomsInConstraintO ;
sendACapyO ;
transID = 0;
receivedEvent = "";
state = waitroomwc;

>
if (state == waitroomwc kk receivedEvent.equals("ARoomWithCapy") &&

temprwc.getBldgO.equals("Zero")) {
transID = 10;
OutputRICO;
sendShowRoomsInConstraintO;
transID = 0;
receivedEvent = "";
state = premenu;

>
if (state == waitcapy kk receivedEvent.equals("ARoomWithCapy")) {

transID = 11;
XferRWCO;
sendARoomWithCapyO;

92

transID = 0;
receivedEvent = "";
state = premenu;

}
if (state == premenu) {

transID = 12;
sendMenuPromptO ;
transID = 0;
receivedEvent = "";
state = menus;

public void XferRoomO ■[
tempr = tempr;

>

public void XferRWCO {
temprwc = temprwc;

}

public RoomWithCapy xferRWC(RoomWithCapy rwc) {
return rwc;

}
}

**

* The RoomKeeper

*/
import java.util.*;
import j ava.net.*;
import java.io.*;
import Support.*;
public class RoomKeeper implements Keeper_States {

protected RoomWithCapySetType roomSet;
protected int size;
protected RoomWithCapySetType sentRoomSet;
protected int state;
protected RoomWithCapy temprwc;
protected Room tempr;
protected int tempc;
protected int transID;
protected String receivedEvent;
protected MARSHSystemSend socketSystemSend; Wadded for MARSHsystem support
protected MARSHSystemReceive socketSystemRcv;Wadded for MARSHsystem support

public RoomKeeper() {
super();
this. initRoomKeeperO;
receivedEvent = "";

93

transID = 0;
temprwc = null;
tempr = null;
tempc = 0;

}

public void FindRoomO {
int c = tempc;
RoomWithCapy rwc = new RoomWithCapy();
rwc.setBldgO'Zero");
rwc.setNum("Zero");
for (Enumeration e = roomSet.elements(); e.hasMoreElementsO;) {

RoomWithCapy thisrwc = (RoomWithCapy) e.nextElementO;
if (thisrwc.getCapacityO >= c && !sentRoomSet.contains(thisrwc)) {

rwc = thisrwc;
sentRoomSet.addElement(thisrwc);
break;

}
}
if (rwc.getBldgO.equals("Zero"))

sentRoomSet = new RoomWithCapySetTypeO;
temprwc = rwc;

public void GetCapyO {
Room r = tempr;
RoomWithCapy rwc = new RoomWithCapy();
for (Enumeration rooms = roomSet.elements(); rooms.hasMoreElements();) {

RoomWithCapy thisroom = (RoomWithCapy) rooms.nextElementO;
if (thisroom.getBldgO .equals(r.getBldgO) &&

thisroom.getNumO .equals(r.getNumO)) {
rwc = thisroom;
break;

}
}
temprwc = rwc;

public Agent getSocketRcvTargetO ■[
return socketSystemRcv.getTargetO;

}

public MARSHSystemSend getSocketSystemSendO {
return socketSystemSend;

}

public void initRoomKeeperO {
roomSet = new RoomWithCapySetTypeO;
sentRoomSet = new RoomWithCapySetTypeO;
state = start;
size = 0;

94

public static void main(String[] args) {
RoomKeeper RK = new RoomKeeperO;
RK.socketSystemRcv = new MARSHSystemReceive(

"RoomKeeper", "localhost", 3000, RK);
RK.socketSystemRcv.start();
RK.socketSystemSend = new MARSHSystemSend(

"RoomKeeper", "localhost", 3000, RK);
RK.transitions();

public void MakeRoomO ■[
RoomWithCapy rwc = temprwc;
boolean exists = false;
if (rwc != null && !roomSet.contains(rwc))

roomSet.addElement(rwc);
size = roomSet .sizeO ;

}

public void receiveACapy(int c) {
if (state == waiting) {

receivedEvent = "ACapy";
tempc = c;

}
}

public void receiveARoom(Room r) {
if (state == waiting) {

receivedEvent = "ARoom";
tempr = r;

}
>

public void receiveARoomWithCapy(RoomWithCapy rwc) ■{
if (state == waiting) -[

receivedEvent = "ARoomWithCapy";
temprwc = rwc;

>
}

public void sendARoomWithCapyO {
if (transID == 3) {

socketSystemSend.send(temprwc);

}
if (transID == 4) {

socketSystemSend.send(temprwc);

}
}

public void transitions() {

95

while (true) {
if (state == start) {

transID = 1;
transID = 0;
receivedEvent = "";
state = waiting;

}
if (state == waiting && receivedEvent.equals("ARoomWithCapy")) {

transID = 2;
MakeRoomO ;
transID = 0;
receivedEvent = "";
state = waiting;

}
if (state == waiting & receivedEvent.equals("ARoom")

& true) {
transID = 3;
GetCapyO;
sendARoomWithCapyO;
transID = 0;
receivedEvent = "";
state = waiting;

}
if (state == waiting & receivedEvent.equals("ACapy")

& true) {
transID = 4;
FindRoomO;
sendARoomWithCapyO;
transID = 0;
receivedEvent = "";
state = waiting;

96

Appendix D. MARSH System Protocol Objects

The Java code below provides the classes used for implementing the MARSH system.

public interface Performatives

public final int makeroom = 30
public final int getacapy = 31
public final int findroom = 32
public final int givecapy = 33
public final int giveroom = 34

}

/**
* The Message class used for the MARSH system.

*/
public class Message implements java.io.Serializable, Performatives

{
protected Agent sender;
protected Agent receiver;
protected int performative = 0;
protected Object content = new ObjectO;

public Message()

■C

super () ;
sender = null;
receiver = null;

}

public Object getContentO {
return content;

>

public int getPerformativeO {
return performative;

}

public Agent getReceiverO {
return receiver;

>

public Object getSenderO {
return sender;

}

public void setContent(int newvalue) {
this.content = new Integer(newvalue);

}

public void setContent(Object newValue) {

97

this.content = newValue;

}

public void setPerformative(int newValue) {
this.performative = newValue;

}

public void setReceiver(Agent newagent) {
receiver = newagent;

}

public void setSender(Agent newagent) {
sender = newagent;

}

public String toStringO {
return "" + sender + receiver + performative + content;

>
}

/**

* The Agent class used for the MARSH system.

*/
import j ava.net.*;
public class Agent implements java.io.Serializable

{
protected Java.lang.String name;
protected Java.lang.String host;
protected int port;

public Agent()

{
super () ;
name = "";
host = "";
port = 0;

}
public Agent(String s)

{
super();
name = s;
port = 3000;
host = "localhost";

}
public Agent(String s, int port)

{
super ();
name = s;
port = port;
host = "localhost";

}

98

public Agent(String name, String host, int port)

■c
super();
this.name = name;
this.port = port;
this.host = host;

>

public Java.lang.String getHostO {
return host;

}

public Java.lang.String getNameO {
return name;

>

public int getPortO {
return port;

}

public void run()

{
}

public void setHost(java.lang.String newHost) {
host = newHost;

}

public void setName(Java.lang.String newName) {.
name = newName;

}

public void setPort(int newPort) {
port = newPort;

}

public String toStringO ■[
return "Name: " + name + "\nHost: " + host + "\nPort: " + port;

>
>

/**

* The receiving "listener" for the MARSH system, tailored for the Room System.

*/
import java.net.*;
import java.io.*;
import RoomSystem.*;
import Support.*;
public class MARSHSystemReceive extends Thread {

protected Message msg;

99

protected Agent me;
protected Agent target;
protected RoomKeeper kparent;
protected RoomUser uparent;
protected ServerSocket clientConnect;
protected Socket commsock;
protected ObjectlnputStream din;

public MARSHSystemReceive(String s, String host, int port,
String tname, String thost, int tport, RoomUser ru) {
super () ;
msg = null;
me = new Agent(s, host, port);
target = new Agent(tname, thost, tport);
uparent = ru;
try {

clientConnect = new ServerSocket(port);

}
catch(IOException e) {

System.out.println("Problem setting up ServerSocket: " + e);

}

public MARSHSystemReceive(String s, String host, int port, RoomKeeper rk) {
super();
me = new Agent(s, host, port);
target = new Agent();
kparent = rk;
try i

clientConnect = new ServerSocket(port);

>
catch(IOException e) {

System.out.printlnC'Problem setting up ServerSocket: " + e);

>

public boolean closeConnectionO {
if (this.commsock != null) {

try {
this.commsock.close();
System.out.printlnC'commsock socket closed.");
this.commsock = null;

>
catch (IOException e) {

System.out.println("Trouble closing commsock socket.");
return false;

>
return true;

}
else

return false;

100

public void closeListenerO {
try {

this.clientConnect.close();
System.out.printlnC'Listener socket closed.");

>
catch (IOException e) {

System.out.println("Trouble closing Listener socket.");

}
this.clientConnect = null;

public Agent getMeO {
return me;

}

public void getMessageO {
Message aMsg = new Message();
if (this.makeListener(this.getMe() .getPortO)) {

// open connection with client
if (thi s. openConne ct ion ()) •£

// receive message from client
Obj ectInputStream agentIn;
try {

din = new ObjectlnputStream(this.commsock.getlnputStreamO);
this.receiveMsg((Message) din.readObjectO);
din = null;

}
catch (Exception e) ■[

System.out.println("Error : " + e);

}
}
this. closeConnectionO;

public Agent getTargetO {
return this.target;

}

public boolean makeListener(int port) {
boolean out = true;
if (clientConnect == null) •[

try {
this.clientConnect = new ServerSocket(port);

}
catch (IOException e) ■[

out = false;

}
}

101

return out;

public boolean openConnectionO {
try {

this.commsock = this.clientConnect.accept();
System.out.printlnC'Got a connection on port

this.commsock.getPort());

}
catch (IOException e) {

return false;

>
return true;

public void receiveMsg(Message newValue) ■[
msg = newValue;
if (kparent != null) {

if (msg.getContentO instanceof Integer)
kparent.receiveACapy(((Integer) msg.getContent()).intValue());

if (msg.getContentO instanceof RoomWithCapy)
kparent.receiveARoomWithCapy((RoomWithCapy) msg.getContent());

else if (msg.getContentO instanceof Room)
kparent.receiveARoom((Room) msg.getContent());

target = (Agent) msg.getSenderO;
kparent.getSocketSystemSendO.setTarget(target);

>
if (uparent != null) {

if (msg.getContentO instanceof Integer)
uparent.receiveACapy(((Integer) msg.getContentO) .intValueO) ;

if (msg.getContentO instanceof RoomWithCapy)
uparent.receiveARoomWithCapy((RoomWithCapy) msg.getContent 0);

else if (msg.getContentO instanceof Room)
uparent.receiveARoom((Room) msg.getContentO);

public void run() ■[
boolean run = true;
while (run) {

this.getMessageO ;
if (uparent != null)

if (uparent.getStateO == uparent.end)
run = false;

}
}
}

/**

* The "sender" for the MARSH system, tailored for the Room System.

*/

102

import j ava.net.*;
import java.io.*;
import RoomSystem.*;
import Support.*;
public class MARSHSystemSend {

protected Message msg;
protected Agent me;
protected Agent target;
protected RoomKeeper kparent;
protected RoomUser uparent;
protected Socket commsock;
protected ObjectOutputStream dout;

public MARSHSystemSend(String s, String host, int port,
String tname, String thost, int tport, RoomUser ru) {
super();
msg = null;
me = new Agent(s, host, port);
target = new Agent(tname, thost, tport);
uparent = ru;

}
public MARSHSystemSend(String s, String host, int port, RoomKeeper rk) {

super () ;
me = new Agent(s, host, port);
target = new Agent();
kparent = rk;

}

public MARSHSystemSend(String s, String host, int port, RoomUser ru) {
super () ;
me = new Agent(s, host, port);
target = new Agent();
uparent = ru;

}

public boolean closeConnectionO {
if (this.commsock != null) {

try {
this.commsock.close() ;
System.out.printlnC'commsock socket closed.");
this.commsock = null;

}
catch (IOException e) {

System.out.println("Trouble closing commsock socket.");
return false;

}
return true;

}
else

return false;

103

public Agent getMeO {
return me;

}

public String getTargetHost 0 {.
return msg.getReceiverO .getHostO ;

>

public int getTargetPort0 {
return msg.getReceiverO .getPortO ;

}

public boolean makeConnectionO {
try {

this.commsock = new Socket(this.getTargetHost(), this.getTargetPort());

System.out.println("Got a socket connection...");

}
catch (Exception e) ■[

System.out.println("Error: " + e);
return false;

}
return true;

public void send(int i) {
msg = new Message();
msg.setContent(i);
msg.setSender(me);
msg.setReceiver(target);
this.sendMessage(msg);

public void send(Object o) {
msg = new Message();
msg.setContent(o);
msg.setSender(me);
msg.setReceiver(target);
if (kparent != null)

msg.setReceiver(kparent.getSocketRcvTarget());
this.sendMessage(msg);

public boolean sendMessage(Message msg) {
if ((commsock == null kk this.makeConnectionO) II commsock != null) •[

System.out.println("Connection made.");
try {

dout = new ObjectOutputStream(this.commsock.getOutputStreamO);
dout.writeObj ect(msg);
dout = null;

}

104

catch (IOException e) {
System.out.printlnC'Problem in sendMgrMessage: " + e);
return false;

>
}
else {

System.out.printlnC'Connection not made");
this.closeConnectionO;

return false;

>
this.closeConnectionO;
return true;

}

public void setTarget(Agent a) {
target = a;

}
}

105

Appendix E. Java Code for Room System Standard Input and Output

import java.io.*;
**
* Thread for handling user inputs of a Capy (interfaces with RoomUser)

*/
import java.io.*;
public class InCapy extends Thread {

roomsystem.RoomUser parent;

public InCapy(roomsystem.RoomUser RU) {
super();
parent = RU;

}

public void capyEntryO {
capyPromptO ;
String s = "";
boolean b = false;
int i = 0;
while (!b) {

try {
s = StdlO.stdioStaticEntryO;
if (s.equals(""))

s = StdlO.stdioStaticEntryO;
i = (Integer.parselnt(s));
if (i < 1)

throw new IOExceptionO ;
b = true;

}
catch (Exception e) -[

parent.stdioSystemSend.stdioStaticPrint("Enter a valid capacity: ");
b = false;
s >
capyPromptO ;

>
>
parent.receiveACapy(i);

public void capyPromptO {
parent.stdioSystemSend.stdioStaticPrint("Enter desired capacity: ");

}

public void run() {.
capyEntryO ;

}
}

**

* Thread for handling user inputs of a Room (interfaces with RoomUser)

*/

106

public class InRoom extends Thread ■[
roomsyst em.RoomUs er parent;

public InRoom(roomsystem.RoomUser RU) {
super();
parent = RU;

>

public void roomEntryO {
roomPromptO ;
String s = "";
boolean b = false;
roomsystem.Room r = new roomsystem.RoomO ;
while (!b) {

try {

s = StdlO.stdioStaticEntryO;
int m = 0;
for (int i = 1; i <= s.lengthO; i++) {

if (m == 0 && s.charAt(i) == ',')
m = i;

}
String t, u;
t = s.substring(0, m);
u = s.substring(m + 1, s.lengthO);

r .setBldg(t .trimO) ;
r .setNum(u.trimO) ;
if (m == s.lengthO)

b = false;
else b = true;

}
catch (IOException e) {

parent.stdioSystemSend.stdioStaticPrint("Enter a valid Room");
b = false;
s = "";
roomPromptO ;

>
}
parent.receiveARoom(r);

public void roomPromptO {
parent.stdioSystemSend.stdioStaticPrint(

"Enter desired room in the format <bldg, num>: ");

>

public void run() {
roomEntryO;

}
}

/**

107

* Thread for handling user inputs of a RoomWithCapy (interfaces with RoomUser)
*/

import java.io.*;
public class InRWC extends Thread {

roomsystem.RoomUser parent;

public InRWC(roomsystem.RoomUser RU) {
super () ;
parent = RU;

}

public void run() {
rwcEntryO;

}

public void rwcEntryO {
rwcPromptO;
String s = "";
boolean b = false;

roomsystem.RoomWithCapy rwc = new roomsystem.RoomWithCapy();
while (!b) {

try {

s = StdlO.stdioStaticEntryO;
int m = 0;
int n = 0;
for (int i = 0; i < s.lengthO; i++) {

if (m == 0 kk s.charAt(i) == ',')
m = i;

if (m > 0 kk s.charAt(i) == ',')
n = i;

}
String t = "";
String u = ""•
String v = "";
t = s.substring(0, m);
u = s.substring(m + 1, n);
v = s.substring(n + 1, s.lengthO);
rwc.setBldg(t.trim());
rwc.setNum(u.trimO);
rwc.setCapacity(Integer.parselnt(v.trimO));
b = true;

}
catch (Exception e) {

parent.stdioSystemSend.stdioStaticPrint(
"Enter a valid RoomWithCapy");

b = false;
s = "";
rwcPromptO ;

>
>
parent.receiveARoomWithCapy(rwc);

108

public void rwcPromptO {
parent.stdioSystemSend.stdioStaticPrint(

"Enter desired roomWithCapy in the format <bldg, num, capy>: ");

}
}

**

* Thread for handling user inputs of a MenuChoice (interfaces with RoomUser)

*/
import j ava.io.*;
public class InMenu extends Thread {

roomsystem.RoomUser parent;

public InMenu(roomsystem.RoomUser RU) {
super () ;
parent = RU;

}

public void menuEntryO {
menuPromptO ;
String s;
int i = 0;
boolean validEntry = false;
while (!validEntry) {

try {
s = StdlO.stdioStaticEntryO;
i = Integer.parselnt(s);
validEntry = true;
if (i < 1 I I i > 4)

throw new IOExceptionO ;

}
catch (Exception e) {

parent.stdioSystemSend.stdioStaticPrint(
"Please enter a valid choice <1..4>! \n");

menuPrompt();
validEntry = false;
e — Mil .

>
}
parent.receiveAMenuChoice(40 + i);

}
public void menuPrompt() {

parent.stdioSystemSend.stdioStaticPrint("Input your selection:\n\t"+
"i to add a room, \n\t2 to find a room with a specific capacity, "+
"\n\t3 to get the capacity of a room, or\n\t4 to quit");

>

public void run() {.
menuEntryO;

109

}
}

**

* Thread for handling sends to the user (interfaces with RoomUser)

*/
import java.io.*;
import java.util.*;
public class StdIO {

roomsystem.RoomUser parent;
int state;

public StdIO(roomsystem.RoomUser RU) {
super () ;
parent = RU;

>

public void capyPromptO {
InCapy IC = new InCapy(parent);
IC.start();

>

public void menuPromptO {
InMenu IM = new InMenu(parent);
IM.start();

}

public void roomPromptO {
InRoom R = new InRoom(parent);
R. start ();

}

public void roomWithCapyPromptO {
InRWC RWC = new InRWC(parent);
RWC.start();

}

public void showRICSet(roomsystem.RoomWithCapySetType ricset) {
if (ricset != null) {.

stdioPrint("\n\nSet of rooms meeting criteria:\n");
for (int i = 0; i < ricset.size(); i++)

stdioPrint("\t"+(roomsystem.RoomWithCapy) ricset.elementAt(i));

stdioPrint("\n");
}

}

public void showRoomWithCapy(roomsystem.RoomWithCapy rwc) {
stdioPrint("\nThe room (including its capacity) is: "+rwc);

>

public String stdioEntryQ throws IOException ■[

110

String s = "";
BufferedReader entry = new BufferedReader(new InputStreamReader(System.in));
s = entry .readLineO ;
return s;

}

public void stdioPrint(String s) {
System.out.println(s);

}

public static String stdioStaticEntryO throws IOException {
String s = "";
BufferedReader entry = new BufferedReader(new InputStreamReader(System.in));
s = entry.readLine();
return s;

>

public static void stdioStaticPrint(String s) {
System.out.println(s);

}
}

111

Appendix F. Room System Implementation with agentMom Communications

The Java code below contains the classes, methods, and attributes that differ from the

MARSH system code presented in Appendix D. The agent.mom package contains the

agentMom classes noted as required by DeLoach [7].

/**
* The RoomUser's side of a conversation begun by the "ACapy" event

*/
import java.net.*;
import java.io.*;
import agent.mom.*;
public class CAPY_INTERFACE extends Conversation {

Agent parent;
int thiscapy;

public CAPY_INTERFACE(RoomUser a, int capy) {
super(a, a.name, a.port);
parent = a;
thiscapy = capy;

>

public void run() {
Message m = new MessageO;
boolean notDone = true;
System.out.printlnC'Starting Capy conversation.");
try i

connection = new Socket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStreamO);
output.flush();
input = new ObjectlnputStream(connection.getlnputStreamO);
while (notDone) {

m.performative = "getroom";
m.content = new Integer(thiscapy);
sendMessage(m, output);
m = readMessage(input);
((RoomUser) parent).receiveARoomWithCapy(

(RoomWithCapy) m.getContent());
if (((RoomWithCapy) m.getContent()).getBldgO.equals("Zero"))

notDone = false;
else while (!((RoomUser) parent).getReady())-Q

}
input.close();
output.close();
connection.close();

>
catch (Exception e) {

System.out.println("Error: " + e);

}

112

>
>

**
* The RoomUser's side of a conversation begun by the "ARoom" event

*/
import j ava.net.*;
import java.io.*;
import agent.mom.*;
public class ROOM_INTERFACE extends Conversation {

Agent parent; // override parent
Room thisr;

public ROOM_INTERFACE(RoomUser a, Room r) {
super(a, "localhost", 3300);
parent = a;
thisr = r;

}

public void run() {
Message m = new MessageO;
System.out.printIn("Starting Room conversation.");
try {

connection = new Socket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStreamO);
output.flush();
input = new ObjectlnputStream(connection.getlnputStreamO);

m.performative = "getcapy";
m. content = thisr;

sendMessage(m, output);
m = readMessage(input);
((RoomUser) parent).receiveARoomWithCapy(

(RoomWithCapy) m.getContent());
input.close();
output.close();
connection.close();

>
catch (Exception e) ■[

System.out.printlnC'Error: " + e);

}
}

>

/**

* The RoomUser's side of a conversation begun by the "ARoomWithCapy" event

*/
import j ava.net.*;
import java.io.*;
import agent.mom.*;

113

public class RWC_INTERFACE extends Conversation

{
Agent parent; // override parent
RoomWithCapy thisrwc;

public RWC_INTERFACE(RoomUser a, RoomWithCapy rwc) {
super(a, "localhost", 3300);
parent = a;
thisrwc = rwc;

}

public void run() {
Message m = new Message();
System.out.printlnC'Starting Rwc conversation.");
try {

connection = new Socket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStreamO);
output.flush();
input = new ObjectlnputStream(connection.getlnputStreamO);
m.performative = "add";
m.content = thisrwc;
sendMessage(m, output);
input .closeO;
output.close();
connection.close();

}
catch (Exception e) {

System.out.printlnC'Error: " + e);

}
}
}

**

* The RoomKeeper's side of all conversations

*/
import java.net.*;
import j ava.io.*;
import af it.mom.*;
public class KEEPER_RECEIVE_INTERFACE extends Conversation {

RoomKeeper parent; // override parent

public KEEPER_RECEIVE_INTERFACE(Socket s, ObjectlnputStream i,
ObjectOutputStream o, RoomKeeper a, Message ml) {
super(s, i, o, a, ml);
parent = a;

}

public void run() {
int state = 0;
boolean notDone = true;
System.out.println("Got »" + m.getPerformativeQ + " - " + m.getContentO +

114

" from " + m.getSenderO) ;
try {

if (m.getPerformativeO.equals("add"))
parent.receiveARoomWithCapy((RoomWithCapy) m.getContent());

else if (m.getPerformativeO.equals("getcapy")) {
parent.receiveARoom((Room) m.getContent());
while (!parent.getReady())-Q
m.setContent(parent.getTemprwc());
parent.setNotReady();
s endMe s s age(m, output);

}
else if (m.getPerformativeO.equals("getroom")) {

while (notDone) •[
parent.receiveACapy(((Integer) m.getContent()).intValueO);

while (!parent.getReady())O
m.setContent(parent.getTemprwc());
parent.setNotReady0;
s endMe s s age(m, output);
if (parent.getTemprwc().getBldg().equals("Zero"))

notDone = false;
else m = readMessage(input);

}
}
input.close();
output.close();
connection.close();

}
catch (Exception e) {

System.out.printlnC'Error: " + e);

}

**

* The RoomUser

*/
import java.io.*;
import java.util.*;
import java.net.*;
import af it.mom.*;
import amomsupport.*;
public class RoomUser extends Agent implements User_States, Menu_Choice,

Runnable •[

protected boolean ready; //added for agentMom support
public String keeperHost; //added for agentMom support
public int keeperPort; //added for agentMom support

public RoomUser(String agentName, int agentPort, String sHost, int sPort) ■[

115

super (agentName, agerttPort) ;
this.initRoomUserO;
this.receivedEvent = "";
this.tempc = 0;
this.tempr = null;
this.temprwc = null;
this.tempchoice = 0;
this.transID = 0;
this.keeperHost = sHost; // the Host to connect to
this.keeperPort = sPort; // the Port to connect to

public void agentMomSend(int i) {
(new ThreadCnew CAPY.INTERFACE(this, i))).start();

}

public void agentMomSend(Room r) {
(new Thread(new R00M_INTERFACE(this, r))).startO;

}

public void agentMomSend(RoomWithCapy rwc) ■[
(new Thread(new RWC_INTERFACE(this, rwc))).start();

>

public synchronized void finalize() {

}

public boolean getReadyO {_
return ready;

>

public boolean isReadyO -[
return ready;

}

public static void main(String[] args) -[
RoomUser RU = new RoomUserO'RoomUser", 4400, "localhost", 3300);
RU.runO;

}

public void OutputRICO {
tempricset = roomsInConstraint;
roomsInConstraint = new RoomWithCapySetTypeO;

>

public void receiveMessage(Socket server, ObjectlnputStream input,
ObjectOutputStream output) {

>

public void run() {
this.stdioSystemSend = new amomsupport.StdlO(this);

116

this.transitions();

public void sendACapyO {
if (transID == 7) {

agentMomSend(tempc);

}
if (transID == 9) {

agentMomSend(tempo);

>

public void sendARoomO {
if (transID == 8) {

agentMomSend(tempr);

}
}

public void sendARoomWithCapyO {
if (transID == 6) {

agentMomSend(temprwc);

>
if (transID == 11) {

stdioSystemSend.showRoomWithCapy(temprwc);

public void sendCapyPromptO ■£
if (transID == 3) {

stdioSystemSend.capyPrompt();

}
}

public void sendMenuPromptO {
if (transID == 1) {

stdioSystemSend.menuPromptO;

}
if (transID == 6) {

stdioSystemSend.menuPromptO;

}
if (transID == 12) {

stdioSystemSend.menuPromptO;

>
if (transID == 13) {

stdioSystemSend.menuPromptO;

>

public void sendRoomPrompt () ■[
if (transID == 4) {

stdioSystemSend.roomPrompt();

117

}
}

public void sendRoomWithCapyPromptO {
if (transID == 2) {

stdioSystemSend.roomWithCapyPrompt();
}

}

public void sendShowRoomsInConstraint(){
if (transID == 10) {

stdioSystemSend.showRICSet(tempricset);

}
>

public void setNotReadyO ■[
this.ready = false;

}

public void setReadyO {
this.ready = true;

}

public void setReady(boolean newReady) {
ready = newReady;

}
}

**

* The RoomKeeper

*/
import java.util.*;
import java.net.*;
import java.io.*;
import af it.mom.*;
import amomsupport.*;
public class RoomKeeper extends Agent implements Keeper_States {.

protected boolean ready; //added for agentMom support

public RoomKeeper(String s, int p) {
super(s, p);
this.initRoomKeeper();
receivedEvent = "";
transID = 0;
temprwc = null;
tempr = null;
tempc = 0;
MessageHandler handler;

118

handler = new MessageHandler(port, this);
handler.start();

}

public boolean getReadyO {
return ready;

>

public RoomWithCapy getTemprwcO {
return temprwc;

}

public boolean isReadyO {
return ready;

}

public static void main(String[] args) ■£
RoomKeeper RK = new RoomKeeper("RoomKeeper", 3300);
RK.runO;

}

public void receiveMessage(Socket server, ObjectlnputStream input,
ObjectOutputStream output) -[
int i;
Message m;
Thread t;
try {

m = (Message) input .readObjectO ;
System.out.println("Received message "+m.performative+" from "+m.sender);
t = new Thread(new KEEPER_RECEIVE_INTERFACE(server, input, output, this,

m));
t.start(); // start new thread

}
catch (Exception e) {

System.out.printlnC'Error: " + e);

>

public void run() {
this.transitions();

}

public void sendARoomWithCapy(){
if (transID == 3)

this.setReady();
if (transID == 4)

this.setReady();

}

public void setNotReadyO {
this.ready = false;

119

public void setReadyO {
this.ready = true;

>

public void setReady(boolean newReady) {
ready = newReady;

}

public void setTemprwc(RoomWithCapy newTemprwc) {
temprwc = newTemprwc;

>

120

Bibliography

1. Ashby, Michael R. Tool-Based Integration and Code Generation of Object Models. MS
thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 2000.
AFIT/GE/ENG/00M-02.

2. Bolognesi, T. and E. Brinksma. "Introduction to the ISO specification language LO-
TOS," The Formal Description Technique LOTOS, 23-37 (1989).

3. Chauhan, D. JAFMAS: A Java-based Agent Framework for Multiagent Systems Devel-
opment and Implementation. MS thesis, University of Cincinnati, ECECS Department,
1997.

4. Cohen, Philip R., et al. "An Open Agent Architecture," Readings in Agents, 197-204
(1998). Morgan Kaufmann Publishers, Inc.

5. Cutkosky, Mark R., et al. "PACT: An Experiment in Integrating Concurrent Engi-
neering Systems," Readings in Agents, 46-55 (1998). Morgan Kaufmann Publishers,
Inc.

6. DeLoach, Scott A. "Multiagent Systems Engineering: A Methodology and Language
for Designing Agent Systems." Proceedings of Agent Oriented Information Systems '99
(AOIS'99). May 1999.

7. DeLoach, Scott A. "Using agentMom." Department of Electrical and Computer En-
gineering, School of Engineering, Air Force Institute of Technology, 1999.

8. d'Inverno, M., et al. "Formalisms for Multi-Agent Systems," The Knowledge Engi-
neering Review, 12(3) (1997).

9. d'Inverno, M. and M. Luck. "Development and Application of an Agent Based Frame-
work." Proceedings of the First IEEE International Conference on Formal Engineering
Methods, edited by Hinchey and Shaoying. 222-231. 1997.

10. Durfee, E. H., et al. "The Agent Architecture of the University of Michigan Digital
Library," Readings in Agents, 98-108 (1998). Morgan Kaufmann Publishers, Inc.

11. Finin, Tim, et al. "KQML as an agent communication language," Communications of
the ACM, 456-463 (November 1994).

12. Fischer, Klaus, et al. "A Pragmatic BDI Architecture," Readings in Agents, 217-231
(1998). Morgan Kaufmann Publishers, Inc.

13. Foner, Leonard N. What's An Agent, Anyway? A Sociological Case Study. Technical
Report Agents Memo 93-01, MIT Media Laboratory, E15-305, 20 Ames St, Cambridge,
MA 02139: MIT Media Lab, May 1993.

14. Graham, Robert P. "Common Object-Oriented Imperitive Language." Department of
Electrical and Computer Engineering, School of Engineering, Air Force Institute of
Technology, September 1999.

15. Hartrum, Thomas C. "Object Oriented Design." Department of Electrical and Com-
puter Engineering, School of Engineering, Air Force Institute of Technology, 1998.

121

16. Hartrum, Thomas C. "Introduction to Formal Systems." Department of Electrical and
Computer Engineering, School of Engineering, Air Force Institute of Technology, 1999.

17. Hartrum, Thomas C. and Scott A. DeLoach. "Design Issues for Mixed-Initiative Agent
Systems." Proceedings of Agent Oriented Information Systems '99 (AOIS'99). July
1999. AAAI-99 Workshop in Mixed-Initiative Intelligence.

18. Huhns, Michael N. and Munindar P. Singh. "Agents and Multiagent Systems: Themes,
Approaches, and Changes," Readings in Agents, 1-23 (1998). Morgan Kaufmann
Publishers, Inc.

19. Huhns, Michael N., et al. "Global Information Management via Local Autonomous
Agents," Readings in Agents, 36-45 (1998). Morgan Kaufmann Publishers, Inc.

20. Ishizaki, Suguru. "Multiagent Model of Dynamic Design," Readings in Agents, 172-
179 (1998). Morgan Kaufmann Publishers, Inc.

21. Kautz, Henry, et al. "An Experiment in the Design of Software Agents," Readings in
Agents, 125-138 (1998). Morgan Kaufmann Publishers, Inc.

22. Kendall, Elizabeth A. "Agent Roles and Role Models: New Abstractions for Intelligent
Agent System Analysis and Design." AIP'98 (Intelligent Agents for Information and
Process Management). 1998.

23. Kendall, Elizabeth A., et al. "The Application of Object-Oriented Analysis to Agent
Based Systems," The Report on Object Oriented Analysis and Design in conjunction
with The Journal of Object Oriented Programming (June 1997). Royal Melbourne
Institute of Technology.

24. Kinney, D., et al. "A Methodology and Modelling Technique for Systems of BDI
Agents." Proceedings of the Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, MAAMAW-96. 1996.

25. Kissack, John A. Transforming Aggregate Object-Oriented Formal Specifications to
Code. MS thesis, Air Force Institute of Technology, March 1999. DTIC Number
ADA361759.

26. Kuokka, Danuel and Larry Harada. "Matchmaking for Information Agents," Readings
in Agents, 91-97 (1998). Morgan Kaufmann Publishers, Inc.

27. Lander, Susan E. "Issues in Multiagent Design Systems," IEEE Expert, 12(2):18-26
(March-April 1997).

28. Lashkari, Yezdi, et al. "Collaborative Interface Agents," Readings in Agents, 111-116
(1998). Morgan Kaufmann Publishers, Inc.

29. Luck, Michael and Mark d'Inverno. "Structuring a Z Specification to Provide a Formal
Framework for Autonomous Agent Systems," Lecture Notes in Computer Science,
967:47-72 (1995). In ZUM'95: The Z Formal Specification Notation.

30. Noe, Penelope Ann. A Structured Approach to Software Tool Integration. MS thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH, March 1999. DTIC
Number ADA361674.

122

31. Object Management Group, Inc. OMG Unified Modeling Language Specification.
http://www.rational.com/uml/index.jtmpl, 1999. Version 1.3.

32. Rao, Anand S. "Modeling Rational Agents withn a BDI-Architecture," Readings in
Agents, 317-328 (1998). Morgan Kaufmann Publishers, Inc.

33. Reasoning Systems, Inc. REFINE User's Guide, 1995.

34. Rich, Charles and Candace L. Sidner. "COLLAGEN: When Agents Collaborate with
People," Readings in Agents, 117-124 (1998). Morgan Kaufmann Publishers, Inc.

35. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,
New Jersey 07632: Prentice Hall, 1991.

36. Shoham, Yoav. "Agent-Oriented Programming," Readings in Agents, 329-349 (1998).
Morgan Kaufmann Publishers, Inc.

37. Sward, Ricky E. Extracting Functionally Equivalent Object-Oriented Designs from
Imperative Legacy Code. PhD dissertation, Air Force Institute of Technology, Wright-
Patterson AFB, OH, September 1997. DTIC Number ADA361674.

38. Sycara, Katia P. "Multiagent Systems," AI Magazine, i9(2):79-92 (Summer 1998).
American Association for Artificial Intelligence.

39. Tankersley, Travis W. Generating Executable Code from Formal Specifications. MS
thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 1999.
DTIC Number ADA361722.

40. Wang, Enoch Y., et al. "Formalizing and Integrating the Dynamic Model within
OMT." Proceedings of the International Conference on Software Engineering. May
1997. Department of Computer Science, Michigan State University.

41. Wooldridge, Michael, et al. "A Methodology for Agent-Oriented Analysis and Design."
Autonomous Agents '99, Proceedings of the Third Annual Conference on Autonomous
Agents, edited by Oren Etzioni, et al. 69-76. ACM Press, May 1999. Queen Mary &
Westfield College and University of Melbourne.

123

31. Object Management Group, Inc. OMG Unified Modeling Language Specification.
http://www.rational.com/uml/index.jtmpl, 1999. Version 1.3.

32. Rao, Anand S. "Modeling Rational Agents withn a BDI-Architecture," Readings in
Agents, 317-328 (1998). Morgan Kaufmann Publishers, Inc.

33. Reasoning Systems, Inc. REFINE User's Guide, 1995.

34. Rich, Charles and Candace L. Sidner. "COLLAGEN: When Agents Collaborate with
People," Readings in Agents, 117-124 (1998). Morgan Kaufmann Publishers, Inc.

35. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,
New Jersey 07632: Prentice Hall, 1991.

36. Shoham, Yoav. "Agent-Oriented Programming," Readings in Agents, 329-349 (1998).
Morgan Kaufmann Publishers, Inc.

37. Sward, Ricky E. Extracting Functionally Equivalent Object-Oriented Designs from
Imperative Legacy Code. PhD dissertation, Air Force Institute of Technology, Wright-
Patterson AFB, OH, September 1997. DTIC Number ADA361674.

38. Sycara, Katia P. "Multiagent Systems," AI Magazine, 19 (2):79-92 (Summer 1998).
American Association for Artificial Intelligence.

39. Tankersley, Travis W. Generating Executable Code from Formal Specifications. MS
thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 1999.
DTIC Number ADA361722.

40. Wang, Enoch Y., et al. "Formalizing and Integrating the Dynamic Model within
OMT." Proceedings of the International Conference on Software Engineering. May
1997. Department of Computer Science, Michigan State University.

41. Wooldridge, Michael, et al. "A Methodology for Agent-Oriented Analysis and Design."
Autonomous Agents '99, Proceedings of the Third Annual Conference on Autonomous
Agents, edited by Oren Etzioni, et al. 69-76. ACM Press, May 1999. Queen Mary &
Westfield College and University of Melbourne.

123

Vita

David Wesley Marsh was born on 4 September 1970 in Salem, Oregon. He graduated

from Nampa Christian High School, Nampa, Idaho in June 1988. He entered undergraduate

studies at Seattle Pacific University in Seattle, Washington where he graduated with a

Bachelor of Science in Electrical Engineering on 30 May 1992. He accepted a four-year

scholarship and was commissioned through the Detachment 910 AFROTC at the University

of Washington in Seattle, Washington on 12 June 1992. David's family includes his wife,

Kristina [Knepshield], whom he married on 6 June 1992 and their son, Quinn, who was

born 26 February 1998.

Before arriving at the Air Force Institute of Technology (AFIT) in August 1998,

he worked 18 months as a maintenance officer supervising B-52 flight line maintenance

at Griffiss AFB, NY, and nearly four years at Kadena AB, Okinawa, Japan, where he

filled a variety of positions supervising back-shop and flight line maintenance of F-15, KC-

135, HH-60, E-3, and C-130 aircraft. He attended Aircraft Maintenance and Munitions

Officers' Course at Sheppard AFB, Texas from September 1993 through January 1994.

At AFIT David was assigned to the Department of Electrical and Computer Engineering,

Graduate School of Engineering and Management and will be assigned to the Information

Directorate, Air Force Research Laboratory at Rome, NY, upon graduation.

124

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

9 March 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

FORMAL OBJECT STATE MODEL TRANSFORMATIONS FOR
AUTOMATED AGENT SYSTEM SYNTHESIS

6. AUTHOR(S)
David Wesley Marsh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Bldg 640
Wright-Patterson AFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
Atta: Captain Freeman Alex Kilpatrick
801 North Randolph Street, Room 732 9-65
Arlington VA 22203-1977
Phone: (703V696-6565

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCE/ENG/00M-03

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Dr. Thomas C. Hartrum, ENG, Phone: (937) 255-3636 ext. 4581

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Automated agent system synthesis is the process of generating code from a requirements specification with appropriate inputs
from the software engineer. Object-oriented (OO) specifications are frequently used to model intelligent software agent
systems and software requirements in general; formal representations capture precisely the intentions of the specifier.
Portions of 00 specifications can be classified as the structural, functional, and state (or dynamic) models; major strides have
been taken in the development of transformations for creating code from formal 00 specifications, specifically the structural
and functional aspects, and are captured within the AFIT Wide-Spectrum Object Modeling Environment (AWSOME). This
research creates a methodology for the automatic transformation of the dynamic model into structural and functional
components which can then be exploited for the generation of executable code exactly reflecting the original intent of the
requirements specification. The integration of agent communication protocols within this context is addressed, providing a
methodology for the incorporation of various agent-to-agent and agent-to-human interaction schemes. Feasibility is
demonstrated through the application of transformations to a formal requirements model within AWSOME resulting in

executable code.

14. SUBJECT TERMS
software engineering, transformation systems, artificial intelligence agents, specification
analysis, code generation, state model, formal methods

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

139
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATES COVERED. Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May- Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. 61101 A.

5d. PROJECT NUMBER. Enter all project numbers
as they appear in the report, e.g. 1F665702D1257;
ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21 -PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring

the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if

available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use

agency-mandated availability statements to indicate the
public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include

copyright information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition

number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the

top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be

completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if

the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

